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Abstract

The redundancy allocation problem is an important problem in system reliability design. Many researchers have investi-
gated the redundancy allocation problem under different assumptions and for various system configurations. However,
most of the studies have disregarded the dependence among components and subsystems. In real-world applications,
the performance of components and subsystems can affect each others. For instance, the heat radiated by a subsystem
can accelerate degradation of adjacent components or subsystems. In this article, a procedure is proposed for solving
the redundancy allocation problem of a bridge structure with dependent subsystems. Copula theory is utilized for mod-
eling dependence among subsystems, and artificial neural network and particle swarm optimization are applied for finding
the best redundancy allocation. A numerical example is included to elaborate the proposed procedure and show its

applicability.
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Introduction

Today, survival of companies in the competitive mar-
kets strongly depends on the capability of effectively
assigning to the customer needs of high performance
and quality. Reliability is related to the ability of a sys-
tem to meet the quality requirements. It is one of the
most important factors in designing and manufacturing
of products. In order to maximize system reliability,
three strategies can be adopted: (1) enhancement of
component reliability, (2) redundancy, and (3) combi-
nation of the two mentioned alternatives.'* These stra-
tegies usually increase the demand for resources (cost,
volume, weight, etc.). Therefore, at the phase of design-
ing a highly reliable system, an important problem is to
get the balance between reliability and other resource
constraints.

The problem of maximizing system reliability
through redundancy is called “redundancy allocation
problem (RAP).” RAP has been vastly studied for dif-
ferent system structures, objective functions, and time
to failure distributions.> It is known that RAP is an
NP-hard problem.* RAP is usually formulated as a
nonlinear integer programming problem, which is in

general difficult to solve due to the considerable
amount of computational effort required to find the
exact solution. Hence, heuristic and meta-heuristic
approaches have been widely used to deal with this
problem (e.g. Tabu aearch,’ genetic algorithm,® particle
swarm optimization (PSO)).

In real-world applications, system components may
share some environmental factors such as temperature,
pressure, load, etc. with each other. In other words, fac-
tors originated from some components may affect the
performance of other components. Moreover, environ-
mental factors may be shared among the subsystems of
a system. For example, thermal radiation from a
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component or subsystem can impact the overall
performance of other components or subsystems.
Furthermore, the number of components installed in a
subsystem can also determine the extent of dependence
among subsystems. However, most of the RAP
researches typically ignore the dependence among com-
ponents or subsystems.® With regard to the literature,
Kotz et al.? studied reliability when two components
are positively quadrant dependent. For this aim, they
used a number of bivariate distributions to model the
dependent components and investigate the effect of
components correlation on the lifetime of parallel
redundant systems. Costa Bueno'® used the reverse rule
of order 2 property between component lifetimes to
study the RAP of k-out-of-n systems via a martingale
approach. He defined the concept of “minimal
standby redundancy” and used it for allocating a redun-
dant spare in a k-out-of-n:F system with dependent
components. Belzunce et al.!' used joint stochastic
orders to study optimal allocation of redundant compo-
nents in series and parallel systems with two dependent
components. Belzunce et al.!? studied optimal alloca-
tion of redundant components in series, parallel, and
k-out-of-n:F systems with more than two components.
For this purpose, they extended bivariate joint stochas-
tic orders and used multivariate joint stochastic hazard
rate and reversed hazard rate orders to select redundant
components. You and Li'? studied RAP in engineering
systems with dependent component lifetimes. They con-
sidered active and standby policies and built the likeli-
hood ratio order and the hazard rate order for lifetimes
in allocating redundancies to k-out-of-n systems. Gupta
and Kumar'® studied the problem of stochastic com-
parison of component and system redundancies where
components are dependent and identically distributed.
For this aim, likelihood ratio ordering, reversed failure
rate ordering, failure rate ordering, and the usual sto-
chastic ordering were considered for carrying out the
study. Furthermore, Jeddi and Doostparast' studied
optimal RAPs in engineering systems with dependent
component lifetime where no specific assumptions on
the dependence structure of lifetimes are considered.
Despite the vast literature on RAP, only few
researches have considered dependence among compo-
nents and subsystems. Therefore, a procedure for eval-
uating RAP when subsystems are not independent is
proposed in the current paper. Then, a bridge system is
considered and the proposed procedure is applied to it.
In brief, the RAP of a bridge system with dependence
among subsystems is considered in this article. The aim
is to propose a procedure for the optimal allocation of
components to a bridge system where the subsystems
can be mutually dependent on each other. It is sup-
posed that the parameters and characteristics of the
components specify the type and extent of dependence
among subsystems. A methodology based on Copula
theory and artificial neural network (ANN) is applied
to model the dependence among subsystems. A PSO
algorithm is employed to solve the dependent RAP.

The main contributions of the paper are as follows:

1. Taking into account the impact of parameters and
characteristics of components on the reliability per-
formance of subsystems in RAP.

2. Proposing a methodology for modeling the type
and extent of dependence among subsystems in
RAP.

The rest of the paper is organized as the following.
In section “Models and methods,” a brief description of
bridge system, Copula theory, ANN, and PSO is given.
In section “Methodology,” the proposed methodology
for solving the dependent RAP is illustrated. A numeri-
cal example is presented in section “Numerical exam-
ple,” and finally, in section “Conclusion,” conclusions
and suggestions for future research are remarked.

Models and methods

Bridge structure

Bridge topology is a well-known structure commonly
used for load balancing and control in various applica-
tions such as electric power generation, transmission,
computer networks, electronic circuits, etc.'® Figure
1(a) shows a simple bridge structure, which consists of
five homogenous subsystems (subl,..., sub5). To share
the imposed load on each subsystem and enhancing the
overall reliability of the system, redundant components
with different characteristics can be allocated in the
subsystems. A redundant bridge structure with nonho-
mogeneous components is illustrated in Figure 1(b).
Many researches in the literature have studied the RAP
of bridge systems. For more information on this line of
research, readers can refer t0.'°'” The RAP of the
bridge system of Figure 1(a) with constraints on vol-
ume, weight, and cost of the system can be formulated
as follows

max f(R, N) = RiRy + R3R4 + R R4R;
+ RyR3Rs — RiRyR3Ry — R Ry R3R5
—RIRR4R5 — R{R3R4R5 — RyR3R4R5
+ 2R RyR3R4R5

subject to
sV (2)
2N <C (3)
GN<W (4)
0<r<l (5)
rn €R (6)
i=1,...,5 (7)

where R; is the reliability of subsystem i for

i=1,...,5 V, C, and W are the maximum allowed
values for volume, cost, and weight of the system,
respectively. Also, R and N are, respectively, the relia-
bility and number of components. In addition, g;j(NV)
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Figure |. Bridge topology: (a) a simple bridge structure and (b) a typical bridge structure with nonhomogeneous redundant

components..

for j =1,2,3 are functions in terms of the number of
components for calculating volume, cost, and weight of
the system. It should be noted that this formulation is
valid for the case of independent subsystems.

Copula theory

According to Sklar,® any multivariate joint distribu-
tion can be written in terms of univariate marginal dis-
tribution functions and a Copula which describes the
dependence structure among the variables. Nelsen® pre-
sented a detailed review of Copula theory and its prin-
ciples. The Copula is one of the most popular methods
for modeling the dependence of data,?! including com-
ponents lifetime data. According to Noorossana and
Sabri-Laghaie,?* utilizing the Copula in comparison to
using traditional multivariate distributions for model-
ing dependency is very advantageous. Some of the
advantages of the Copula method with respect to

traditional multivariate distributions are as follows: (1)
By the Copula method, one can determine the degree
and structure of dependence, (2) dependence structure
and marginal performance can be specified separately,
(3) Copulas are robust to strictly increasing and contin-
uous transformations, and (4) univariate marginal
functions can be easily derived from different
distributions.

Consider H as a joint cumulative distribution func-
tion of a vector of continuous random variables
(Ty, ..., T,) with univariate marginals Fi, ... F,. Based
on Copula theory, a Cy can be found where

H(Tla ~~~,Tn): CO(FI(Tl)s ---aFn(Tn)) (8)

in which 6 is the vector of Copula parameters expres-
sing dependence among T}, ...,7T, and can be esti-
mated by means of correlation coefficients.

In order to model the dependence among the life-
times of components, many Copulas can be used.
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Table I. Summary of the multivariate Copula functions in this study.

Type Formula

Parameter

Frank

Gumbel

i=1

Clayton

d —Ou; _
C,= -Tu.og(. + M)

e

1/6
C)= exp (— (2 (~ log (u.-))”) )

—1/6}
Cy= max{ (il ()™ —(d— |)) ,o}

0>0

0= 1

0= ,0#0

Choosing an appropriate Copula to model the depen-
dence structure is a critical issue. In reliability prob-
lems, the dependence among component lifetime is
positive and this should be considered in the Copula
selection process.>! One of the most common Copulas
used for modeling the dependence of component life-
times is the Archimedean family. The Archimedean
family can be defined as

C(uy, .. s (/’71(“11)) (9)

in which ¢ is a continuous and non-increasing function
¢ : [0,%] — [0, 1] and is called Archimedean generator.
In the present study, Frank, Gumbel, and clayton
Copulas from the Archimedean family are utilized.
Table 1 gives the mathematical definition of these
Copulas.

1) = (e ),

ANN’s

ANNSs are composed of simple computational elements
operating in parallel. These elements are inspired by
biological nervous systems. The main applications of
ANN:Ss are function approximation by obtaining regres-
sion and transformations from input space to feature
space by means of nonlinear mapping. An ANN is
trained by some data examples to learn the function or
transformation mapping and, then, it is used to provide
the outputs to the new input data. The ANN has been
widely used in various fields, such as pattern recogni-
tion,? classification,”* and prediction.”> As shown in
Figure 2, ANN consists of three main parts: (1) input
layer, (2) hidden layer, and (3) output layer. In the
input layer, the value of each input is multiplied by a
weight and sent to the nodes of the next layer (called
neurons). In the neurons of the hidden layer, a function
called activation function is applied to the weighted
sum of the inputs to the neuron. The most commonly
used activation function is the sigmoid function that is
defined as

= 10
I+ exp(—x) (10)
The weights of the output neurons of the network

are obtained by applying an activation function, often

linear, on the weighted sum of the hidden layer neuron

X0 hi
X1 ha 1
X2 h3,1
X3 ha

hs

Figure 2. Neural network structure.

values. In this study, the ANN is used to model the struc-
ture of dependence among the subsystems of bridge sys-
tem. To do so, it is trained to relate the failure times of
the subsystems in the bridge system topology to para-
meters of the subsystems. In detail, for given input para-
meters of subsystems, the output will be the type and
parameters of the Copula that is suitable for modeling
the dependence among the intended subsystems. In this
case, the back propagation algorithm is used to train the
network. The relationships between the parameters of
different subsystems and their corresponding Copula
type and parameters are characterized as

CupulaType = F((Py, P2, ..., Py) (11)
0:F2(P1,P2,...,P,,) (12)
where Py, P,, ..., P, are vectors of effective parameters

of subsystem 1 to subsystem 7, 6 is the vector of Copula
parameters, and F and F, are mapping functions from
subsystem parameters to Copula type and Copula para-
meters, respectively.

PSO

PSO is a well-known optimization algorithm for the
optimization of continuous nonlinear functions,
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Table 2. Database structure.

No. | Subsystem | Subsystem 2 Subsystem 3 Subsystem 4 Subsystem 5 T | Failed
subsystem
Pl Py .cof Pp [Py Pa|.co | Po|P| P2 Po|Pr | Py | oo [Py |P | P2| .| Po
|
2
N

introduced by Kennedy and Eberhart.?® This algorithm
has been inspired by collective behaviors, such as bird
flocking and fish schooling. In this method, random
solutions, as initial particles, are scattered in solution
space and through an iterative procedure, all particles
are converged to global optima. In the iterative proce-
dure, the position of each particle is updated by means
of its velocity vector, which takes into account the past
direction of the particle, best position of the particle in
past iterations, and best-observed position of all parti-
cles in the iterations already elaborated. Then, the posi-
tion of each particle is updated by its corresponding
velocity vector. The mathematical expression of the
aforementioned process is stated as follows

ViD=l + riei(pbestt — XYY + raca(gbest! — x1)
(13)
R R A (14)
where vi* ! is the velocity vector of particle i in the

iteration ¢, x! is the position of particle 7 in the iteration
t, and w is an inertia coefficient that expresses the ten-
dency of the particle of keeping its position and takes
values between 0 and 1. pbest; and gbest! are the best
position of particle i in the past iterations and of all
particles in the already elaborated iterations, respec-
tively. r; and r, are random numbers between 0 and 1
and ¢; and ¢, are learning factors, respectively. The
steps of this algorithm are as as follows:

1. Define algorithm parameters such as number of
iterations and population size.

2. Generate initial population and evaluate the fitness
functions.

3. Update the position of each particle according to
Relations 13 and 14, and then evaluate the fitness
function of the new particles.

4. Stop if the termination condition of the iterative
process is met, else go to Step 3.

Methodology

In this section, a methodology for considering depen-
dence among subsystems in a RAP is proposed with
respect to a bridge system configuration. A historical

database of subsystem failure times, parameters, and
configurations of a bridge system is required. In this sys-
tem, all components work under cold standby strategy
and are either operating or failed at any given moment in
time. As in the RAP, a combination of components can
be used in each subsystem of the system. For the bridge
structure, when the subsystems are independent, the relia-
bility of the system can be calculated as Relation 1.

In this study, the Copula theory is utilized to take into
account dependence among subsystems. Specifically, an
ANN and Copula-based approach are proposed to
model the dependence among subsystems. According to
this approach, a relationship between parameters and
characteristics of the subsystems and the impact that sub-
systems may have on each other is established.
Subsystems with potentially dependent failure times are
chosen and a database of their characteristics and failure
history is built. To form this database, parameters and
characteristics of components which may affect the fail-
ure times should be included in the model.

In order to relate parameter values and correspond-
ing failure times, parameter values are classified into
specified categories. Each category consists of a combi-
nation of parameters with different ranges. By this cate-
gorization, each system can be assigned to a specific
category according to its parameters. As mentioned, the
database contains failure times of systems with different
parameter values. Further, the subsystems which have
failed and caused the system to fail are recorded in the
database. The structure of the database is given in
Table 2. In this table, failed subsystem, failure times of
subsystems (T), and parameters (P;, P», ..., P,) of the
system are given. Based on this database, one can
explore the parameter values that may have an effect on
the failure of a specific subsystem. Moreover, categories
are built for parameters and subsystems according to
failed subsystems. This results in a set of parameter val-
ues and failure times for each subsystem. Then, the cor-
responding set of each subsystem is categorized with
regard to parameter values in specific ranges. Number
and limits of the ranges are chosen according to the
database size and domain of the parameters. Next step
is to find the set of subsystem failure times correspond-
ing to each parameter’s category. Relation between
parameter categories and failure time sets is shown in
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Figure 3. Data gathering process.
Figure 3. In this figure, G; fori = 1, ...,k is representa-  respectively, the joint reliability functions of subsys-
tive of the ith category of parameters, and Lj(-zkfl) and tems (1,2), (3,4), (1,4,9), (2,3,9), (1,2,3,4), (1,2,3,5),
L,Zk forj =1, ...,nare respectively the lower and upper  (1,2,4,5), (1,3.4,5), (2,3,4,5), and (1,2,3,4,5). In this

bounds of the jth parameter in category k.

As mentioned before, the reliability of the bridge sys-
tem in the case when all subsystems are independent is
calculated according to Relation 1. When the subsys-
tems are dependent on each other, the reliability func-
tion becomes

R = Ry + R34 + Riss

+ Rozs — Rizsa — Rioss (15)
—Ri245 — Rizas — Rozes

+ 2R2345

where R is the reliability of the system; Rz, R34, Ryss,
Ry3s, Riza, Riozs, Rioas, Rizas, Rozas, and Ryozys are,

article, Copula theory is utilized to model the joint
reliability functions of the subsystems. To obtain the
Copula model, the following optimization model is
considered

max f{N) = Cj(R,, Ry) + C}(Rs, Ry) + Cj(Ry, Ry, Rs)
+ C3(Ry, R3, Rs) — Cy(Ry, Ry, R3, Ry)

—Cy(Ry. Ry, R3, Rs) — Cj(Ry, Ry, Ry, Rs)

—Cy(Ry, R3, R4, Rs) — C4(Ra, R3, R4, Rs)

+ 2C3(Ry, Ry, Ry, Ry, Rs)

subject to
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Figure 4. A typical example of ANN inputs and outputs.

sV (17)
gN)<C (18)
BN W (19)
0<r; <1, x5 € real number (20)

where Cg for d=2,3,4,5 is a d-dimensional Copula
function with parameter vector 6 for modeling the joint
reliability function of the corresponding subsystems.
Here, it is supposed that the parameters or characteris-
tics of the subsystems affect the parameter vector of the
Copula functions. Therefore, the relation between the
parameter vector of the Copula functions and the para-
meters of the subsystems is obtained by means of an
ANN. The subsystem parameters are the inputs and
the Copula parameters are the outputs of the ANN.
Suppose that we want to model the joint reliability
function between subsystems 1 and 2. To do so, a
Copula function is fitted for every combination of para-
meter categories. Then, an ANN is trained between the

fitted Copula parameters and subsystem parameter
categories. By means of the trained ANN, one can find
the Copula parameters of the joint reliability function
between subsystems 1 and 2. This procedure is followed
for all combinations of subsystems that based on
Relation 15 a joint reliability function is required for
them. Inputs and outputs of the ANN for building the
joint reliability function between subsystems 1 and 2
are depicted in Figure 4, where 6; for i =1, ...,k and
j=1,...,k is the Copula parameter vector corre-
sponding to the failure time sets of categories i and j.
Three classes of Copulas, Clayton, Gumbel, and
Frank are here considered for reliability modeling.
Maximum likelihood estimation (MLE) method is
applied for fitting the Copulas to the failure time data
and finding the most appropriate Copula function. A
list of 10 Copulas should, then, be recorded for every
system in the database. Choosing the appropriate
Copula class for a new system, a classification process
is performed. In order to determine the Copula type, a
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classifier ANN is trained for each joint reliability term
in Relation 15. The ANN classifier relates subsystem
parameters and Copula types. So, according to the val-
ues of the subsystem parameters, an appropriate
Copula is proposed. Then, as mentioned earlier, an
ANN is trained to find the relation between subsystem
parameters and the parameter vector of the chosen
Copula. By following this procedure, one can approxi-
mate the type and amount of dependence in a new
bridge system just by evaluating the parameters of its
subsystems.

A PSO algorithm is utilized to find the optimal con-
figuration in the RAP of the bridge system. During
each iteration of the PSO algorithm when solutions are
updated to new ones, trained ANNs are applied to find
the dependence structure of the new solutions. By
knowing the dependence structure, the reliability of the
solutions can be calculated based on Relation 16. The
procedure of the proposed algorithm is as follows:

1. Collect data, categorize them, and fit the best
Copula to failure time data of all required combi-
nations of parameter categories and subsystems.

2. Train classifier ANNs for classifying type of
Copulas and, then, train ANNSs for approximating
parameters of the Copulas based on outputs of
step 1.

3. Generate initial solutions of the PSO algorithm.

4. Determine effective parameters of each subsystem
and apply trained ANNs to find the dependence
structure among subsystems.

5. Use Relation 16 to calculate the reliability of the
solutions (particles).

6. Update the position of each particle and calculate
fitness of the new particles based on Relation 16.

7. Stop if the termination condition is met, else go to
Step 6.

This procedure is also illustrated in Figure 5.

Numerical example

In order to validate the proposed model, a numerical
example is included to show model applicability. As
mentioned in section “Methodology,” all components
work under cold standby strategy and are either operat-
ing or failed at any moment in time. Also, each subsys-
tem contains nonhomogeneous components. In this
regard, a bridge structure with five subsystems is con-
sidered where a different number of redundant compo-
nents can be allocated to each subsystem. Redundant
components can be selected from four types of compo-
nents as type 1, type 2, type 3, and type 4. All types may
fail according to Weibull probability distribution func-
tion with parameters as detailed in Table 3. Therefore,
reliability of a component at a given time ¢ is

(0 = exp (3)" @)

where r;(f) for i = 1,2, 3,4 is the reliability of compo-
nent 7 at time 7, and «; and vy; are respectively the scale
and shape parameters of the ith component’s Weibull
distribution. Three parameters of volume, weight, and
cost are recorded for the components. In this regard,
volume, weight, and cost of the system should not
exceed specified values. It is supposed that parameters
Py and P, are parameters of the components that may
affect the reliability performance of other components.
For example, P; and P, can be considered as thermal
and radiation coefficients of components. Since there
are only constraints on volume, weight, and cost of the
system, the maximum allowed values of these para-
meters are given in Table 3. Also, the maximum num-
ber of components in each subsystem is set to be 10. On
the other hand, parameters P, and P, affect the Copula
parameters among different subsystems. Hence, the
reliability optimization model at a predetermined time
(e.g. t = 100) can be proposed as follows

max/(N) = Cj(R, Ry) + C}(R3, Ry) + C3(Ry, Ry, Rs)
+ C3(Ry, R3, Rs) — Ci(Ry, Ry, Ry, Ry)

—Cj(R1, Ry, R3, Rs) — C3(Ry, Ry, Ry, Rs)

—Cj(R1, R3, R4, Rs) — Cy(R2, R3, Ry, Rs)

+ 2C5(R1, Ry, Ry, Ry, Rs)

(22)
subject to
5 4
Z Z ;<50 (23)
5 4
i=1j=1
5 4
>N w150 (25)
i=1j=1
4
> ny<10 (26)
j=1
0<r;<1,r; € real number (27)

where R; for i =1, ..., 5 is the reliability of subsystem
i; rj, vj, ¢;, and w; for j =1, ...,4 are respectively the
reliability, volume, cost, and weight of component j.
N = [ny1, ...,ns4] is the vector of component numbers
in the subsystems.

Based on the proposed procedure in “section
Methodology,” first a historical database is required.
In this regard, a database of failure times and para-
meter values is generated. A sample of the database
and ranges of the parameters are presented in Tables 4
and 5. According to this database, parameters P; and
P, are used for determining the Copula parameters and
volume, and cost and weight are constraining para-
meters. Then, the failure times are categorized based on
the failed subsystems. This results in a set of parameter
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Gather historical data
of system failures and
the parameters of their subsystems

v

Categorize failure time data
and their corresponding
subsystem parameters

v

Fit copulas
to failure time data for different combinations of
parameters categories
and obtain the type and parameters of copulas
(type and parameters)

v

Train ANNs based on Save ANNs for usin
. . —— ) - S & m
subsystems and copula information in optimization process
e randorm Calculate fitness function f———Pp
initial solutions —P of all initial particles Apply_ AN'\_‘S
based on Relation 16 for estimating
¢ copula parameters
Calculate velocity
—» vector of all particles and
update their positions
No ¢
Calculate the fitness function > Apply ANNs
of new particles positions for estimating «
based on Relation 16 ¢ copula parameters
Stop condition

is met?

Figure 5. Flowchart of the proposed procedure.

values and failure times for each subsystem. The ranges
of parameters are, then, categorized into some sub-
ranges. In this example, five sub-ranges are considered
for each of the parameters P; and P,. These sub-ranges
are given in Table 5. Afterward, the failed subsystems
with their corresponding failure times are assigned to

the combination of proposed sub-ranges. This results
in 25 sets of failure times for each subsystem, k = 125
sets in total. Combinations of sub-ranges which do not
contain enough failure times for model fitting can be
disregarded. For modeling the joint reliability func-
tions, the most appropriate Copulas among Clayton,
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Table 3. Component characteristics..

Component  Weibull parameters Volume Weight Cost
t

ype Shape (y) Scale (@)

| 0.001 17 40 7 35
2 0.02 21 30 5 2

3 0.03 32 30 2 35
4 0.004 44 10 I 5

Table 4. A sample of the database.

No. Subsystem |  Subsystem2 T Failed subsystem

P P, P P,
| 35 30 15 50 04310 |
2 35 15 8 60 0.4876 2
3 7 15 17 120 0.5061 |
4 14 30 27 120 0.5895 2
5 42 180 17 120 0.7988 2
6 42 45 27 90 0.0401 2
7 63 45 180 150 0.0399 |
8 70 50 190 150 0.2974 |
9 14 60 50 60 0.1861 |
10 14 45 45 50 0.2796 |

Table 5. Sub-ranges of parameters (in arbitrary units).

Sub-range number P, P,

| I-15 1-40

2 16-30 41-80

3 3145 81-120
4 4660 121-160
5 61-75 161-200

Table 6. Structure and performance criteria of classifier
ANN:Ss.

Subsystems  Performance criteria (MSE) Hidden layer size
Train Validation Test
1,2 0.006  0.007 0.0l [50 50]
34 0.05 0.05 0.05 [122]
1,4,5 0.01 0.01 0.02 [16 8]
2,35 0.03 0.04 0.05 [97]
1,2,3,4 0.0l 0.02 0.0l [12 10]
1,2,3,5 0.02 0.02 0.02 [910]
1,2,4,5 0.03 0.04 0.05 [6 6]
1,3,4,5 0.02 0.04 0.04 [125]
2,345 0.03 0.04 0.05 [9 3]
1,2,3,4,5 0.007  0.004 0.02 [24 12]

ANN: artificial neural network; MSE: mean square error.

Gumbel, and frank Copulas are fit to the failure time
data. In this regard, for each combination of subsys-
tems in Relation 22, a Copula is required. Therefore,

125 sets of failure times are used for determining the
type and parameters of the most appropriate Copulas
in modeling the joint reliability functions among differ-
ent combinations of subsystems. As a result, a list of 10
Copulas is recorded for every system in the database.

Now, ANNSs are trained with input parameter values
and output dependence structure (type and parameters of
Copulas). Hereby, for every Copula term in Relation 22,
a classifier ANN for determining the type of the Copula
and an ANN for specifying the Copula parameters are
trained. For example, structure and performance criteria
(mean square error (MSE)) of classifier ANNSs trained by
the database are represented in Table 6.

After constructing ANNSs for classifying the type of
Copulas, a similar procedure is performed for modeling
the relation between Copula parameters and para-
meters of subsystems. For example, structure and per-
formance criteria (MSE) of ANNs trained for
predicting different Copula parameter values are given
in Table 7. All trained ANN structures are saved for
estimating the dependence structure of a typical system
based on its effective parameter values. For each sub-
systems combination, the ANN that has the best MSE
is chosen for estimating the dependence structure.

After training the ANNs and based on the proposed
procedure, the optimum number of redundant compo-
nents in each subsystem is found by the PSO algorithm.
During each iteration of the PSO algorithm and based
on Relation 22, the trained ANNs are applied to find
the dependence structure of new solutions. In more
details, when a new solution is generated during differ-
ent steps of the PSO algorithm, according to the P;
and P, parameters of that solution and by means of
trained ANN:Ss, the type and parameters of the required
Copulas are predicted.

The trend of the best fitness versus iteration number
of the PSO algorithm in case when subsystems are inde-
pendent and dependent is represented in Figure 6(a)
and (b), respectively. It can be observed from Figure
6(a) and (b) that the outputs of the PSO algorithm for
dependent subsystems are generally less than the out-
puts for subsystems that are independent. Also, optimal
system configuration for both cases of independent and
dependent subsystems is given in Table 8. According to
Table 8, reliability of the best configuration when sub-
systems are dependent is less than the reliability when
subsystems are independent.

Conclusion

In this article, the RAP of a bridge system with depen-
dent subsystems was studied. It is supposed that some
parameters of components and subsystems can affect
the reliability performance of others. In this context,
Copula theory was used for modeling the dependence
structure among subsystems. The ANNs were applied
for modeling the relationship between the parameters
of the subsystems and the dependence structure. To do
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Table 7. Structure and performance criteria (MSE) of ANNs trained for estimating Copula parameters.

Copula types subsystems Performance criteria (MSE) R? Hidden layer size
Train Validation Test Train Validation Test
Clayton 1,2 0.003 0.004 0.008 0.99 0.98 0.97 [12 8]
Gumbel 0.07 0.06 0.07 0.99 0.98 0.98 [4 2]
Frank 0.11 0.12 0.12 0.98 0.98 0.98 [4 2]
Clayton 34 0.05 0.1 0.1 0.99 0.97 0.89 [14 3]
Gumbel 0.0l 0.04 0.02 0.99 0.98 0.98 [9 4]
Frank 0.02 0.04 0.05 0.99 0.98 0.96 [9 4]
Clayton 1,4,5 0.02 0.07 0.06 0.99 0.98 0.95 [13]
Gumbel 0.02 0.03 0.03 0.99 0.99 0.99 [12]
Frank 0.03 0.02 0.0l 0.99 0.99 0.99 [12 5]
Clayton 2,35 0.004 0.007 0.0l 0.99 0.97 0.97 [7 6]
Gumbel 0.006 0.0l 0.0l 0.99 0.99 0.99 [7 6]
Frank 0.007 0.03 0.03 0.99 0.99 0.99 [87]
Clayton 1,2,3,4 0.002 0.02 0.0l 0.99 0.98 0.95 [7 6]
Gumbel 0.02 0.0l 0.02 0.99 0.99 0.98 [77]
Frank 0.005 0.02 0.08 0.99 0.99 0.98 [8 9]
Clayton 1,2,3,5 0.002 0.005 0.04 0.99 0.98 0.98 [16]
Gumbel 0.006 0.0l 0.01 0.99 0.99 0.99 [10 5]
Frank 0.002 0.003 0.003 0.99 0.98 0.97 [z
Clayton 1,2,4,5 0.002 0.003 0.003 0.99 0.98 0.97 [13 5]
Gumbel 0.005 0.0l 0.02 0.99 0.98 0.98 [107]
Frank 0.0l 0.1 0.03 0.99 0.98 0.97 [7 5]
Clayton 1,3,4,5 0.08 0.03 0.03 0.99 0.99 0.98 [10 8]
Gumbel 0.002 0.01 0.06 0.99 0.99 0.98 [19]
Frank 0.002 0.001 0.003 0.99 0.99 0.99 [17 9]
Clayton 2,345 0.002 0.001 0.002 0.99 0.99 0.99 [19 8]
Gumbel 0.001 0.003 0.0l 0.99 0.98 0.98 [107]
Frank 0.01 0.03 0.06 0.99 0.98 0.98 [8 8]
Clayton 1,2,3,4,5 0.04 0.05 0.2 0.99 0.98 0.93 [16 5]
Gumbel 0.001 0.02 0.01 0.99 0.99 0.98 [17 9]
Frank 0.006 0.0l 0.02 0.99 0.99 0.98 [12 4]
ANN: artificial neural network; MSE: mean square error.
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Figure 6. Trend of the best fitness versus iteration number of PSO algorithm: (a) bridge system with independent subsystems and

(b) bridge system with dependent subsystems.

so0, a historical database of system parameters and their
failure times was used. Then, a PSO algorithm was
applied for finding the best redundancy structure.
Numerical examples show that disregarding depen-
dence can overestimate system reliability.

According to the size of the available database, dif-
ferent approaches can be utilized. The goal of this
article was to propose a methodology which can be

useful in modeling dependency in the RAP. In this
research, we supposed that enough failure data are
available. When enough data for training ANN is not
at hand, other approaches such as adaptive network-
based fuzzy inference system (ANFIS) and other types
of ANNSs can be utilized to increase database size or
build the predicting model. In addition, experts can be
helpful in compensating lack of data. For future
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Table 8. Optimal system configuration.

Subsystem Type Type Type Type Best
| 2 3 4 fitness

Independent | | 0 3 7 0.9637

2 0 0 0 2

3 0 0 9 3

4 0 0 0 I

5 0 0 0 8
Dependent | 0 0 0 5 0.9485

2 0 0 0 3

3 0 4 2 10

4 0 0 0 I

5 0 0 0 5

research, we aim to propose a methodology which can
be useful when enough data are not available.
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