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Abstract

For nuclear power plants (NPPs) to have long tifes, ageing is a major issue. Currently, ageingagament for
NPP systems is based on correlations built fromederexperimental data. However, each system asvin
characteristics, operational history, and enviromim&o account for this, it is possible to resarfprognostics that
predicts the future state and time to failure (TDF)the target system by updating the generic &atiom with
specific information of the target system. In tlpaper, we present an application of particle fittgrfor the
prediction of degradation in steam generator tuéth a case study, we also show how the predictisults vary
depending on the uncertainty of the measuremeat dat

Keyword: Prognostics, Particle filtering, Model-based meth8team generator tube rupture, Nuclear powet plan

1 Introduction

Nuclear power plants (NPPs) have a design life0sf6@ years, and possibly more for new

designs. Therefore, ageing management is the mmopbriant issue [1]. Current ageing
1



management relies on methods for predicting futdegradation states based on generic
information, such as historical failure data, expental data, and correlations derived from such
data [2]. However, each system has different cheriatics, as well as operational histories and
environments, which influence the degradation mecdf specific information on a target

system is available, this would be useful for mgkpredictions [3]. Prognostics methods to
predict the future state of the target system &mdime to failure (TTF) can integrate generic

correlation with specific information related teettarget system.

Prognostics is one of the tasks of prognostics lealth management (PHM), which also
includes detection of anomalies and diagnosis oft§a[4]. PHM enables condition-based
maintenance (CBM), which can establish optimum mesiance, replacement, and parts supply

plans, thereby preventing unexpected accidents.

1 Type 3

Specific information
- Specific component
under specific condition

1 Type 2

Generic information
- Average component
under given usage condition

Type 1

Historical failure data
* Average failure time

Figure 1. Categorization of prognostics



Prognostics can be categorized into three typesrikpg on the information used. Figure 1
represents the categorization of prognostics [%jpeTl prognostics methods make use of
historical failure data to develop failure timetdisutions from historical TTF data and predicts
the TTF of generic components. Type 1 prognostiodudes Weibull analysis. Type 2
prognostics methods consider stress factors, ssckemperature, load, vibration, etc., and
develop correlations among these factors and #te sf the components to predict the TTF for
generic components under given operational enviemts Type 2 prognostics includes linear
regression models. Conventional ageing and integnanagement methods belong to Types 1
and 2 prognostics. Type 3 prognostics reflects iipanformation of the specific components
and include the general path model (GPM) [6, 7] padicle filtering [8, 9]. In this paper, we
consider Type 3 prognostics and show how specifiermation can be integrated with generic

information by patrticle filtering.

Prognostics has already been developed in vari@as aequiring high safety and reliability,
such as aviation, the military, and railways [4, Blowever, there are not many cases of

applications to NPPs, due to their strict mainteegpolicies.

This study modifies and updates the generic cdrogldi.e., generic information) by using
measurement data (i.e., specific information) fitarget system or component so that different
characteristics of individual systems or componeats be considered. To accomplish this, we
consider particle filtering as a prognostics methealticle filtering can update parameters of a
state estimation model by using newly observed dathe target system or component, and can
then predict the future system state and its TTth whe updated model. In this paper, the

prognostics method of particle filtering is appliedthe case study of steam generator tubes.



Through this case study, how to update the gemerni@lation by using measurements data will
be shown. Thus, the effect of uncertainty in meament is identified by a sensitivity study.
From the study, how the prediction results varyasteling on the uncertainty of the measurement
data and how the uncertainty works to balance #meigc information and specific information

are presented.

The paper is organized as follows. Section 2 ilaies the basis of particle filtering and
introduces the data from steam generator tubes fasetie case study. Section 3 presents the

results of the prognostics analysis. Lastly, Secfigprovides conclusions and future perspectives.

2 Prognostics method and case study

2.1 Prognosticsusing particlefiltering

Particle filtering is a model-based method thatdpmts the state of a target component by
updating a degradation model with the measuremetat af the target [8, 9]. It can be applied to
complex, non-linear systems since the predictiopeidormed by simulating particles sampled
by Monte Carlo simulation (MCS). In simple words,is a recursive filter that predicts the
current and future states by using informatiorhef previous step based on the assumption of the
Markov process. Particle filtering predicts the reat state based on the previous step's
information as a prior, updates the predicted statk measurement data as a likelihood, and
finally, obtains a posterior of the current stalee posterior of the current step is used as the

prior in the next step as sequential Bayesian upglat



The patrticle filtering algorithm can be explaineg Importance sampling [8, 9, 10].
Importance sampling is a method that enables tpeogpnation of the required distribution by
introducing an arbitrarily chosen distribution, whiis called the importance distribution. It
samples from the importance distribution and assgrweight, which is a proportion of the
importance distribution, to each sample. When apprating the posterior distribution,
importance sampling can be used as follows. Thghweif each sampl®’ is calculated using

Equation (1).

iy — L@ _ f019)7@)
w(0) =" = e @

Here, f(0'|y) is the posterior distributiony is an observation, ang(6') is the importance
distribution. By Bayes’ theoremf(6|y) = f(y|8")f(8%). Since the prior distribution is already
known and close to the posterior, it can be usaddenmportance distribution. Then, the weight
in Equation (1) becomes the likelihood. Particléefing is performed by implementing

importance sampling sequentially whenever the oasien is obtained.

The degradation model for particle filtering shoblel expressed in a recurrence relation, as
shown in Equation (2), in which the current staje of the K" time step is affected by the

previous statex,_,. Here,® is the vector of model parameters and an error term.

Xk = f(X—1, O, &) (2)



Prognostics using particle filtering consists ofifetages: prediction, update, resampling,
and prognosis. In the prediction phase, the custate x, is predicted using the information of
the previous step. The model parame&iae estimated as well. First, for the model patarse
® at the K step, n particles are generated frgwe,|0,_,). This means thaf(e,) is estimated
by f(6,_,), which is a distribution of the model parameterret tk-1)" step. Because the model
parameters are given as a distribution, the systears can be handled. For the stateat the
K step, similar to the model parameter, n partieles generated from(x,|x,_,). Then, x, is

propagated through the model wié),.

In the update phase, the measurement gtatas reflected. For the measurement dsja
the likelihood of each particle of state is calculated. For example, if the state followsoamal
distribution, the likelihood function is determineing Equation (3), whee, . sure IS the
standard deviation of the measurement data regdregdats uncertainty. Then, the likelihood is
normalized so that the sum is equal to 1, as shioviaguation (4), and it is used as a weight in

the resampling phase.

. . 1 _ 032 .
L(ilxic 0k) = Fmg——exp (—(yf—xk))'l =1,2,3,-,n (3)
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In the resampling phase;, and ©, are resampled according to the weight obtainech fro
the update phase. In this process, a particlehsita lower weight is eliminated and a particle
that has a higher weight is sampled several tiff@sthe sampling, we use the inverse transform
sampling method, as shown in Figure 2 [10]. Fissttandom number is generated from the
uniform distribution with the range (0,1). Thenetparticle is sampled by mapping the random
number to the cumulative density function (CDF)tbé weight. A total of n particles are
resampled, and finally, the particles give the eost of x, and ©,. Then, recursively, the

posterior probability distribution of thé"lstep is used as the prior of the (K &)ep.
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Figure 2. Inverse transform sampling



The above procedures are represented in Figurs 3héwn in the figure, at th&'lstep, x;, is

predicted from the previous step’s posterior ansl ipdated by measurement data

Figure 4 shows different results of the update pHas different levels 0fo,,oqsure- The prior
distribution is updated by resampling accordinghi likelihood. By resampling, the distribution
is shifted to the particle having a large likelidoolf ¢,,0q5ure IS infinitely large (i.e.,
information of the measurement data is not religlitee likelihood of the particles is given as

follows by Equation (3).

0, y=axt
lim L={’ Yk gk
0, Vi # Xt

Omeasure™®

For high o,,.q4sure, Particles have lower and almost identical valokkelihood regardless of
the measurement datg,. As a result, all of the particles are resampleith \@lmost the same
frequency and, therefore, the updated distribusaamost the same as the original distribution.

That is, the measurement data does not conveyargepecific information.

In contrast, aso,,.q4sure tends toward zero (i.e., information of the meameant data is reliable),

the likelihood of the particles is as follows.

. oo = xi
lim L=]" Yk k
Omeasure—0 0 Vi =+ xll(
, .



For low o,,0asure, the particles that are close to the measurematd y, have a large
likelihood, whereas the others have a small lileith In other words, the likelihood is
concentrated on the particles that are closer @onteasurement data. As a result, the particles
that are close to the measurement data are res@ufn@ipiently and, therefore, the distribution is

shifted to the measurement data. That is, mordfgpadormation is conveyed.

posterior
k -1 Step f(_x_l\-:il_ylzk—l) _ j _____ P d' ti
22 % g rediction
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Figure 3. Procedure of particle filtering
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Figure 4. Influence of measurement data with déiféuncertainties

In the prognosis phase, the future state and tomilure are predicted by using the updated
model and current state. In this phase, the madebilonger updated. The statg,,,..,; at the
current time is propagated by the model until ttegesreaches the failure threshold. Then, the
TTF distribution can be obtained from the failuireds of each particle whose state reaches the

threshold.

2.2 Casestudy: Steam generator tube ageing management

In a pressurized water reactor (PWR), a steam geords located at the boundary between
the primary side and the secondary side [11]. Ttkans generator turns the secondary side’s
feedwater into steam using the primary side’s autdh@ated in the reactor core. Since it removes
decay heat from the reactor core and prevents ¢ea&hradioactive materials, it is one of the
most important safety components. The steam gemesabperated under the extremely harsh
conditions of high temperature and high-presswrdl including some radioactive materials.

Accidents caused by stress corrosion cracking (S&fd)wear have been reported [12]. Then,

10



steam generator tube rupture (SGTR) is considevkith is one of the initiating events in both
deterministic and probabilistic safety assessmérttis. integrity of the steam generator must be
well managed for safety. Currently, according te Bteam Generator Management Program
(SGMP), the integrity assessment for steam gemsr&alivided into three steps with respect to
the preventive maintenance time [2]. The first sgeedegradation assessment (DA), which is a
preliminary assessment before preventive maintenarite second step is condition monitoring
assessment (CM), which assesses the current $tpteventive maintenance. The last step is
operation assessment (OA), which predicts the éustaite until the next preventive maintenance.
For OA as a prediction step, probabilistic intggessessment can be applied. This is performed

with generic correlations and input data for thecsfic steam generator.

Because of inaccessibility to the steam generatwe failure data from the operating power
plants, we generated simulation data from a virtsi@am generator by using the PASTA
(Probabilistic Algorithm for Steam generator TubgsAssment) program [13]. PASTA performs
assessment of the integrity of steam generatostubis a probabilistic assessment program that
accounts for the uncertainty of various variablBASTA calculates burst pressure as one
criterion of tube integrity. Burst pressure is theessure that equipment can handle before
rupturing or bursting. Assessment is possible foalaradial, and wear cracks; for axial cracks,

the burst pressure model is given in Equation13):[

Py = 0.58(0, + au)§[1.1o4 - Lh], (5)

L+2t
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where Py : burst probability

g, :Yyield strength of the material
o, :tensile strength of the material
R; :inner radius of the tube

L :length of the crack

: thickness of the tube

o~

Q.

: depth of the crack

>

: depth ratio of the crack%

The model is derived from data of burst experimayith various crack sizes. For probabilistic
modeling, PASTA considers the uncertainty of yigééhsile strength, and crack inspection. MCS
is used to obtain the distribution of burst pressiihen, the burst probability is obtained as a
ratio of the number of simulations that are lowart the burst criterion to the total number of
simulations launched. Due to the limitation of fiad data availability, we assumed the data from
PASTA is a field dataset and used it for progngstio other words, some of the data were used
to calibrate the generic model, while the rest wegarded as measurement data acquired from

the operating plant.

We generated 276 data sets of burst probability tree from PASTA. Burst probability is
obtained at every EFPY (effective full power yelaEFPY =18 months). We regarded the tube as
being ruptured when the burst probability exceetlédh. In practice, when the burst probability
exceeds 40%, plugging or sleeving is performed 1#], 209 sets were assumed to be historical

or generic failure data and were used to deterrtfisemodel parameters, while the remaining

12



sets were assumed to be measurement data and seeréou testing. We divided the testing sets
into four cases according to the time window of evleations. The cases correspond to the

accumulated data during 3, 6, 9, and 12 EFPY, ctispdy.

3 Reaults

3.1 Estimation of TTF distribution

In this paper, Paris’ law [15] is assumed as thgratiation model:

% = C(Ak)™, Ak = AovTa, (6)

where a is the crack length, C and m are consthatdepend on the material and environment,
Ak is the range of the stress intensity factor, aedis the stress range. In this study,is

regarded as the burst probability.

By taking the logarithms in Equation (6), we ob&rEquation (7). Then, the model parameters

m/2 and InC (Acv/m)™ are obtained by fitting 209 training data sets.

d
lnﬁ =InC + mIn(Acvra) (7)

= InC (AoVT)™ + %m a

13



=mlna+C

(m' = % C =InC (Aax/ﬁ)m>

Table 1 shows the results with one of the traindiagp sets, where is burst probability and

dN =1 (EFPY).

14



Table 1. Training data set and results

EFPY 1 2 3 4 5 6 7

a 0.0004 0.001 0.0028 0.0064 0.0135 0.0244 0.0361
Ina -7.82405 -6.90776 -5.87814 -5.05146 -4.30507 &@171 -3.32146
lng—; -7.41858 -6.31997 -5.62682 -4.94766 -4.51899 -41448-3.78099
EFPY 8 9 10 11 12 13 14

a 0.0589 0.085 0.1217 0.1639 0.2176 0.2765 0.3448

Ina -2.83191  -2.4651 -2.1062 -1.8085 -1.5251  -1.28554.06479
lnj—; -3.64582 -3.30498 -3.16534 -2.92434 -2.83191 -B683

Figure 5 shows the result of fitting the data obl€al to Equation (7). In the figure, the dots

represent the training data and the line represbatéitted equation. For this sef)’ is equal to

0.69 andC' is equal to -1.676.

15
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Figure 5. Fitting data to the degradation model

By fitting the 209 training data sets as above,itiitgal distribution of the model parameters is
obtained. Because we have no information aboudisteibution, we simply assumed that the
parameters follow a Gaussian distribution, whichthe most commonly used distribution.
Assuming that the model parameters follow a Gausdiatribution, the means and standard

deviations of the parameters are obtained as:

m ~N(0.671, 0.049)

C ~N(—1.745,0.156).

16



To verify that the parameters follow the assumedritution, we performed the Kolmogorov-

Smirnov (K-S) test, which is commonly used for itggtfor normality [16]. Table 2 shows the

results of the K-S test for the model parameters.

Table 2. Results of the K-S test for the model peigrs

Maximum
di P-value
iscrepancy
m' 0.089 0.086
c 0.078 0.179

Both assumed distributions are verified as accépw@ibtributions at the 5% significance level.

In addition, Figure 6 shows Q-Q (quantile-quantp&ts for the model parameters. A Q-Q plot
is a graphical method for comparing two probabiliigtributions and is commonly used to
compare a data set to a theoretical model [17]ufigg a Q-Q plot, it is possible to intuitively

identify whether the data follow a Gaussian disttidn. The linearity of the points in the figure

suggests that the data are normally distributed.

17
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Figure 6. Q-Q plots of the model parameters

To apply particle filtering, we transformed the chtation model into a recurrence relation in

which the current state depends on the previous one

ax = Cy(Aomag_1)™dN + a,_4 (8)

= exp(C'k) ak_lmlde + ap_q.

We assumed that the likelihood function is a nordastribution (Equation (3)) Witho,easure =

0.01.

Figure 7 provides the developed pseudocode ofdhe|e filtering.
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Input

* measure_data[t]: (real array) measurement datagurrent time when a measurement is finished
* s (real value) standard deviation of the measurémtata

* thresh: (real value) threshold value of the degradattaies

e initial_x[2]: (real array) mean and standard deviation oftit&li state

e initial_0[p,2]: (real array) mean and standard deviation ofnfi&l model parameters, : number

of parameters

* n: (integer value) the number of particles
Output

* TTF[n]: (real array) time to failure
Variables or Arguments

* X[k,n]: n particles of the estimated state
* O[k,p,n]: n particles of the parameters

* k: (real value) time step

# initial distribution of the state x and the pasdens @
X[1,:]=random.nor mal(initial_x[1], initial_x[2], n)
for iin (1:p)

0[1,i,:;]=random.nor mal(initial_0([i,1], initial_©[i,2], n)

end

k=1

While min(x[k,:]) < thresh
k=k+1
X[K,:]=f(x[k-1,:], O[k-1,p,:])

if k <=length(measure_data)

likel[:]= exp(-(measure_data[K]-x[k,:])"2/(2*s[K]"2))/(s[K]*(2*§"0.5))  # calculating likelihood

cdf[:]=cumulative_sum(likel[:])/ sum(likel[:])

# Equation (8)

# updating with measurement

# Equation (3, 4)

19
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r=random()

for iin (1:n) # resampling by inverse transform samplifigyre 2)
index=count(cdf[:] <r)
temp_x[i]=x[k,index]
temp_O[:,i]= O[K,:,index]

end

X[k, ]=temp_x[:]

0lk,:,:]=temp 6[:,7]

else
X[K,:]=random.nor mal(x[k,:],s) # prognosis
end
end
for iin (1:n)
TTF[i]=count(x[:,i]<thresh)
end
return TTF[:]

Figure 7. Pseudocode of particle filtering

Figure 8 shows the results obtained using partidiering with differing amounts of
measurement data from 3 EFPY to 12 EFPY. The tutatber of particles is 10,000. In the
figure, the dots, solid line, and two dotted limepresent the measurement data, threshold, mean,
and the 8 and 9%' percentiles of the estimated burst probabilitgpestively. The horizontal
line gives the threshold value and the verticak limdicates the current time when the

measurement is finished. In addition, we preseetnttean, median, and"&nd 9%' percentile

20



values of the obtained TTF distribution in TableA3.expected, the results show that uncertainty

decreases as the updated amount of measuremeintciateses.

6 EFPY
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Figure 8. Prognostic results using particle fihgrivith different amounts of measurement data
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Table 3. Prognostic results using particle filtgrimith different amounts of measurement data

Number of
measuremen Mean Median [ percentile o)) percentile
data
3 15.669 15.350 11.464 20.830
6 17.950 17.596 14.524 22.512
9 18.459 18.322 16.424 21.068
12 16.923 16.891 16.137 17.802

Additionally, to identify the effect of the numbef training data sets on the prediction accuracy,
we performed a sensitivity study for the numbetraining data sets. We constructed the model
with 10, 50, 100, 150, and 200 training sets, aigdifé 9 shows the results of prognostics from
the constructed models. In the figure, the reslitsv a similar tendency among all cases, except
for the case with a very small number of trainiregadsets. If the number of training data sets is

above a certain number, then it does not signifigaaifect the prediction result.
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Figure 9.Prognostics results with different numbers of tiregndata

3.2 Sendtivity analysiswith respect to measurement uncertainty

Particle filtering is a method for using specifiddrmation as well as generic information. It
reflects specific information to the generic coatEln and updates its parameters. From the
viewpoint of a Bayesian update, the prognosticaltesing the generic information corresponds
to prior information, while that of updating theesific information belongs to posterior
information. In this case, the specific informatimkes the role of the likelihood. Obviously, the
confidence of prior information and likelihood aftethe result of prognostics. Therefore, for
optimized results, balancing the uncertainty obpmformation and the likelihood is important.
In the above section, Figure 4 explained how ther pnformation and the likelihood contribute

on the TTF and its standard deviation. The cordfdhe uncertainty of prior information and the

23



likelihood is done by adjusting the uncertainty roéasurement,, .,s.re, Which affects the
update phase. Figure 10 shows the results for waievels of uncertainty in the measurement
data represented by,,..sure- AS the uncertainty gets smaller, the significaotée likelihood
becomes larger, which means the measurement isndamin determining the prognostics
results. In contrast, when uncertainty in the measent data is larger, the prior generic
information is more important and weighs more ia gosterior. Each model is updated until 6
EFPY with the same uncertainty in the measuremat#, @,,.,5, = 0.01. Then, at 7 EFPY,
the updating is done with the different levels ofcertainty, as indicated in the legend.
Correspondingly, in the figure, we see that witlyéauncertainty, the updated model is closer to
the original model (non-update), whereas, with $nalncertainty, the updated model is closer

to the measurement data at 7 EFPY.

e
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’ —e- bl
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Figure 10. The results of prognostics with différencertainty in the measurement data
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Figure 11 shows the predicted distribution andliliked for the measurement data. The figure is
a histogram of predicted particles and the bold Imthe fitted normal distribution. With small
uncertainty in the measurement data, the likelihisambncentrated on the particles that are close
to the measurement value by Equation (2). Theretbee posterior distribution is also close to
the measurement. With large uncertainty, the lilaid is scattered out to all particles regardless

of measurement data. Therefore, the posteriornilgligion is closer to the prior distribution.
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Figure 11. Likelihood with various uncertaintiesroéasurement
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4 Conclusons

Basically, ageing and integrity management of camgpds and systems in NPPs are based on
the controlled generic information and plant-speaifata from periodic inspection. Due to the
high standards for ensuring safety, it is hardind the applications of particle filtering method
in nuclear fields, which is commonly used for upigtmodel parameters in various engineering
applications. Therefore, this paper introducedphsicle filtering method and demonstrated its
procedure through case studies. Particle filtersng model-based method that allows updating
of a generic correlation (i.e., based on genefflarmation) with measurement data (i.e., specific
information) to predict the TTF. Advanced conditioronitoring technologies can allow for the
effective use of specific information for the inmiual components and systems, so the
knowledge update process on the basis of obsenvstich as the particle filtering is expected to

be an emerging trend even in safety-critical fields

The development of the method was exemplified bgse study regarding steam generator tube
degradation considering Paris' raw. Thus, the efiéeneasurement uncertainty was evaluated
by a sensitivity study. The sensitivity study dewstoated how to update the model while
balancing between generic and specific informatiocording to their uncertainty. Nevertheless,
there are some limitations. In practice, it is easy to define the uncertainty for existing and
new information because of various error factorghsas malfunctioning of measuring
instrument, human error and so on. Furthermoris, bt clear whether a plant-specific data can
modify a degradation evaluation model at a decismaking situation due to managerial or

regulatory characteristics, which needs inter-gigzary study along with field tests.
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