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Abstract 

For nuclear power plants (NPPs) to have long lifetimes, ageing is a major issue. Currently, ageing management for 
NPP systems is based on correlations built from generic experimental data. However, each system has its own 
characteristics, operational history, and environment. To account for this, it is possible to resort to prognostics that 
predicts the future state and time to failure (TTF) of the target system by updating the generic correlation with 
specific information of the target system. In this paper, we present an application of particle filtering for the 
prediction of degradation in steam generator tubes. With a case study, we also show how the prediction results vary 
depending on the uncertainty of the measurement data. 
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1 Introduction 

Nuclear power plants (NPPs) have a design life of 40–60 years, and possibly more for new 

designs. Therefore, ageing management is the most important issue [1]. Current ageing 
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management relies on methods for predicting future degradation states based on generic 

information, such as historical failure data, experimental data, and correlations derived from such 

data [2]. However, each system has different characteristics, as well as operational histories and 

environments, which influence the degradation process. If specific information on a target 

system is available, this would be useful for making predictions [3]. Prognostics methods to 

predict the future state of the target system and its time to failure (TTF) can integrate generic 

correlation with specific information related to the target system. 

Prognostics is one of the tasks of prognostics and health management (PHM), which also 

includes detection of anomalies and diagnosis of faults [4]. PHM enables condition-based 

maintenance (CBM), which can establish optimum maintenance, replacement, and parts supply 

plans, thereby preventing unexpected accidents. 

 

 

Figure 1. Categorization of prognostics 
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Prognostics can be categorized into three types depending on the information used. Figure 1 

represents the categorization of prognostics [5]. Type 1 prognostics methods make use of 

historical failure data to develop failure time distributions from historical TTF data and predicts 

the TTF of generic components. Type 1 prognostics includes Weibull analysis. Type 2 

prognostics methods consider stress factors, such as temperature, load, vibration, etc., and 

develop correlations among these factors and the state of the components to predict the TTF for 

generic components under given operational environments. Type 2 prognostics includes linear 

regression models. Conventional ageing and integrity management methods belong to Types 1 

and 2 prognostics. Type 3 prognostics reflects specific information of the specific components 

and include the general path model (GPM) [6, 7] and particle filtering [8, 9]. In this paper, we 

consider Type 3 prognostics and show how specific information can be integrated with generic 

information by particle filtering. 

Prognostics has already been developed in various areas requiring high safety and reliability, 

such as aviation, the military, and railways [4, 5]. However, there are not many cases of 

applications to NPPs, due to their strict maintenance policies. 

This study modifies and updates the generic correlation (i.e., generic information) by using 

measurement data (i.e., specific information) from a target system or component so that different 

characteristics of individual systems or components can be considered. To accomplish this, we 

consider particle filtering as a prognostics method. Particle filtering can update parameters of a 

state estimation model by using newly observed data of the target system or component, and can 

then predict the future system state and its TTF with the updated model. In this paper, the 

prognostics method of particle filtering is applied to the case study of steam generator tubes. 
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Through this case study, how to update the generic correlation by using measurements data will 

be shown. Thus, the effect of uncertainty in measurement is identified by a sensitivity study. 

From the study, how the prediction results vary depending on the uncertainty of the measurement 

data and how the uncertainty works to balance the generic information and specific information 

are presented. 

The paper is organized as follows. Section 2 illustrates the basis of particle filtering and 

introduces the data from steam generator tubes used for the case study. Section 3 presents the 

results of the prognostics analysis. Lastly, Section 4 provides conclusions and future perspectives. 

 

2 Prognostics method and case study 

2.1 Prognostics using particle filtering 

Particle filtering is a model-based method that predicts the state of a target component by 

updating a degradation model with the measurement data of the target [8, 9]. It can be applied to 

complex, non-linear systems since the prediction is performed by simulating particles sampled 

by Monte Carlo simulation (MCS). In simple words, it is a recursive filter that predicts the 

current and future states by using information of the previous step based on the assumption of the 

Markov process. Particle filtering predicts the current state based on the previous step's 

information as a prior, updates the predicted state with measurement data as a likelihood, and 

finally, obtains a posterior of the current state. The posterior of the current step is used as the 

prior in the next step as sequential Bayesian updating.  
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The particle filtering algorithm can be explained by importance sampling [8, 9, 10]. 

Importance sampling is a method that enables the approximation of the required distribution by 

introducing an arbitrarily chosen distribution, which is called the importance distribution. It 

samples from the importance distribution and assigns a weight, which is a proportion of the 

importance distribution, to each sample. When approximating the posterior distribution, 

importance sampling can be used as follows. The weight of each sample θ� is calculated using 

Equation (1). 

 

w�θ�� = �(	
|�)
�(	
) = �(�|	
)�(	
)

�(	
)  (1) 

 

Here, �(θ�|�) is the posterior distribution, � is an observation, and �(θ�) is the importance 

distribution. By Bayes’ theorem, ��θ���� = �(�|��)�(��). Since the prior distribution is already 

known and close to the posterior, it can be used in the importance distribution. Then, the weight 

in Equation (1) becomes the likelihood. Particle filtering is performed by implementing 

importance sampling sequentially whenever the observation is obtained. 

The degradation model for particle filtering should be expressed in a recurrence relation, as 

shown in Equation (2), in which the current state �� of the kth time step is affected by the 

previous state ����. Here, Θ is the vector of model parameters and ε is an error term. 

 

�� = �(����, Θ� , ��) (2) 
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Prognostics using particle filtering consists of four stages: prediction, update, resampling, 

and prognosis. In the prediction phase, the current state �� is predicted using the information of 

the previous step. The model parameters Θ are estimated as well. First, for the model parameters 

Θ at the kth step, n particles are generated from �(Θ�|Θ���). This means that �(Θ�) is estimated 

by �(Θ���), which is a distribution of the model parameter at the (k-1)th step. Because the model 

parameters are given as a distribution, the system error ε can be handled. For the state � at the 

kth step, similar to the model parameter, n particles are generated from �(��|����). Then, �� is 

propagated through the model with Θ�. 

In the update phase, the measurement data �� is reflected. For the measurement data ��, 

the likelihood of each particle of state � is calculated. For example, if the state follows a normal 

distribution, the likelihood function is determined using Equation (3), where	���� !"� is the 

standard deviation of the measurement data representing its uncertainty. Then, the likelihood is 

normalized so that the sum is equal to 1, as shown in Equation (4), and it is used as a weight in 

the resampling phase. 

 

L������� , Θ�� � = �
√%&�'()*+,( exp 0− (�2�32
 )4%56789:;74 < , i = 1, 2, 3,⋯ , n (3) 

w(��� , Θ�� ) = CD�2E32
 ,F2
 G
∑ CD�2E32
 ,F2
 GI
JK  (4) 
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In the resampling phase, �� and Θ� are resampled according to the weight obtained from 

the update phase. In this process, a particle that has a lower weight is eliminated and a particle 

that has a higher weight is sampled several times. For the sampling, we use the inverse transform 

sampling method, as shown in Figure 2 [10]. First, a random number is generated from the 

uniform distribution with the range (0,1). Then, the particle is sampled by mapping the random 

number to the cumulative density function (CDF) of the weight. A total of n particles are 

resampled, and finally, the particles give the posterior of �� and Θ�. Then, recursively, the 

posterior probability distribution of the kth step is used as the prior of the (k+1)th step. 

 

 

Figure 2. Inverse transform sampling 
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The above procedures are represented in Figure 3. As shown in the figure, at the kth step, �� is 

predicted from the previous step’s posterior and it is updated by measurement data ��.  

Figure 4 shows different results of the update phase for different levels of ���� !"�. The prior 

distribution is updated by resampling according to the likelihood. By resampling, the distribution 

is shifted to the particle having a large likelihood. If ���� !"�  is infinitely large (i.e., 

information of the measurement data is not reliable), the likelihood of the particles is given as 

follows by Equation (3). 

 

lim56789:;7→∞
O = P0, �� = ���0, �� ≠ ���  

 

For high ���� !"�, particles have lower and almost identical values of likelihood regardless of 

the measurement data ��. As a result, all of the particles are resampled with almost the same 

frequency and, therefore, the updated distribution is almost the same as the original distribution. 

That is, the measurement data does not convey relevant specific information. 

In contrast, as ���� !"� tends toward zero (i.e., information of the measurement data is reliable), 

the likelihood of the particles is as follows. 

 

lim56789:;7→SO = T∞, �� = ���0, �� ≠ ��� . 
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For low ���� !"� , the particles that are close to the measurement data ��  have a large 

likelihood, whereas the others have a small likelihood. In other words, the likelihood is 

concentrated on the particles that are closer to the measurement data. As a result, the particles 

that are close to the measurement data are resampled frequently and, therefore, the distribution is 

shifted to the measurement data. That is, more specific information is conveyed. 

 

 

Figure 3. Procedure of particle filtering 
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Figure 4. Influence of measurement data with different uncertainties 

 

In the prognosis phase, the future state and time to failure are predicted by using the updated 

model and current state. In this phase, the model is no longer updated. The state �V!""�WX at the 

current time is propagated by the model until the state reaches the failure threshold. Then, the 

TTF distribution can be obtained from the failure times of each particle whose state reaches the 

threshold.  

 

2.2 Case study: Steam generator tube ageing management 

In a pressurized water reactor (PWR), a steam generator is located at the boundary between 

the primary side and the secondary side [11]. The steam generator turns the secondary side’s 

feedwater into steam using the primary side’s coolant heated in the reactor core. Since it removes 

decay heat from the reactor core and prevents leakage of radioactive materials, it is one of the 

most important safety components. The steam generator is operated under the extremely harsh 

conditions of high temperature and high-pressure fluids, including some radioactive materials. 

Accidents caused by stress corrosion cracking (SCC) and wear have been reported [12]. Then, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

steam generator tube rupture (SGTR) is considered, which is one of the initiating events in both 

deterministic and probabilistic safety assessments. The integrity of the steam generator must be 

well managed for safety. Currently, according to the Steam Generator Management Program 

(SGMP), the integrity assessment for steam generators is divided into three steps with respect to 

the preventive maintenance time [2]. The first step is degradation assessment (DA), which is a 

preliminary assessment before preventive maintenance. The second step is condition monitoring 

assessment (CM), which assesses the current state at preventive maintenance. The last step is 

operation assessment (OA), which predicts the future state until the next preventive maintenance. 

For OA as a prediction step, probabilistic integrity assessment can be applied. This is performed 

with generic correlations and input data for the specific steam generator. 

Because of inaccessibility to the steam generator tube failure data from the operating power 

plants, we generated simulation data from a virtual steam generator by using the PASTA 

(Probabilistic Algorithm for Steam generator Tube Assessment) program [13]. PASTA performs 

assessment of the integrity of steam generator tubes. It is a probabilistic assessment program that 

accounts for the uncertainty of various variables. PASTA calculates burst pressure as one 

criterion of tube integrity. Burst pressure is the pressure that equipment can handle before 

rupturing or bursting. Assessment is possible for axial, radial, and wear cracks; for axial cracks, 

the burst pressure model is given in Equation (5) [13]: 

 

YZ = 0.58��� + �!� X
^
 _1.104 − a

ab%X ℎd,  (5) 
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where YZ : burst probability 

�� : yield strength of the material 

�! : tensile strength of the material 

e� : inner radius of the tube 

O : length of the crack 

f : thickness of the tube 

d : depth of the crack 

ℎ : depth ratio of the crack= h
i 	

 

The model is derived from data of burst experiments with various crack sizes. For probabilistic 

modeling, PASTA considers the uncertainty of yield, tensile strength, and crack inspection. MCS 

is used to obtain the distribution of burst pressure. Then, the burst probability is obtained as a 

ratio of the number of simulations that are lower than the burst criterion to the total number of 

simulations launched. Due to the limitation of failure data availability, we assumed the data from 

PASTA is a field dataset and used it for prognostics. In other words, some of the data were used 

to calibrate the generic model, while the rest were regarded as measurement data acquired from 

the operating plant. 

We generated 276 data sets of burst probability over time from PASTA. Burst probability is 

obtained at every EFPY (effective full power year, 1 EFPY =18 months). We regarded the tube as 

being ruptured when the burst probability exceeded 40%. In practice, when the burst probability 

exceeds 40%, plugging or sleeving is performed [11, 14]. 209 sets were assumed to be historical 

or generic failure data and were used to determine the model parameters, while the remaining 
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sets were assumed to be measurement data and were used for testing. We divided the testing sets 

into four cases according to the time window of observations. The cases correspond to the 

accumulated data during 3, 6, 9, and 12 EFPY, respectively. 

 

3 Results 

3.1 Estimation of TTF distribution 

In this paper, Paris’ law [15] is assumed as the degradation model:  

 

j�
jk = l(∆n)�, ∆n = ∆�√o),  (6) 

 

where a is the crack length, C and m are constants that depend on the material and environment, 

∆k is the range of the stress intensity factor, and ∆σ is the stress range. In this study, ) is 

regarded as the burst probability. 

By taking the logarithms in Equation (6), we obtained Equation (7). Then, the model parameters 

m/2 and ln l (∆�√o)� are obtained by fitting 209 training data sets. 

 

ln j�
jk = ln l +' ln�∆�√o)�  (7) 

= ln l (∆�√o)� +'2 ln )	
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= m′ ln ) + C′ 

0m′ = '2 , C′ = ln l (∆�√o)�< 

 

Table 1 shows the results with one of the training data sets, where ) is burst probability and 

dN = 1 (EFPY). 
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Table 1. Training data set and results 

EFPY 1 2 3 4 5 6 7 

) 0.0004 0.001 0.0028 0.0064 0.0135 0.0244 0.0361 

ln ) -7.82405 -6.90776 -5.87814 -5.05146 -4.30507 -3.71317 -3.32146 

ln s)st -7.41858 -6.31997 -5.62682 -4.94766 -4.51899 -4.44817 -3.78099 

EFPY 8 9 10 11 12 13 14 

) 0.0589 0.085 0.1217 0.1639 0.2176 0.2765 0.3448 

ln ) -2.83191 -2.4651 -2.1062 -1.8085 -1.5251 -1.28554 -1.06479 

ln s)st -3.64582 -3.30498 -3.16534 -2.92434 -2.83191 -2.68385  

 

Figure 5 shows the result of fitting the data of Table 1 to Equation (7). In the figure, the dots 

represent the training data and the line represents the fitted equation. For this set, m′ is equal to 

0.69 and C′ is equal to -1.676. 
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Figure 5. Fitting data to the degradation model 

 

By fitting the 209 training data sets as above, the initial distribution of the model parameters is 

obtained. Because we have no information about the distribution, we simply assumed that the 

parameters follow a Gaussian distribution, which is the most commonly used distribution. 

Assuming that the model parameters follow a Gaussian distribution, the means and standard 

deviations of the parameters are obtained as: 

 

m′~N(0.671, 0.049) 
C′~N(−1.745, 0.156). 
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To verify that the parameters follow the assumed distribution, we performed the Kolmogorov-

Smirnov (K-S) test, which is commonly used for testing for normality [16]. Table 2 shows the 

results of the K-S test for the model parameters. 

 

Table 2. Results of the K-S test for the model parameters 

 
Maximum  

discrepancy 
P-value 

m′ 0.089 0.086 

C′ 0.078 0.179 

 

Both assumed distributions are verified as acceptable distributions at the 5% significance level. 

In addition, Figure 6 shows Q-Q (quantile-quantile) plots for the model parameters. A Q-Q plot 

is a graphical method for comparing two probability distributions and is commonly used to 

compare a data set to a theoretical model [17]. By using a Q-Q plot, it is possible to intuitively 

identify whether the data follow a Gaussian distribution. The linearity of the points in the figure 

suggests that the data are normally distributed.  
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(a) Q-Q plot of m′ 
 

(b) Q-Q plot of C′ 
Figure 6. Q-Q plots of the model parameters 

 

To apply particle filtering, we transformed the degradation model into a recurrence relation in 

which the current state depends on the previous one: 

 

)� = l�(∆�yo)���)�2st + )���  (8) 

= exp(C′�) )����′2st + )���. 
 

We assumed that the likelihood function is a normal distribution (Equation (3)) with ���� !"� =
0.01. 

Figure 7 provides the developed pseudocode of the particle filtering. 
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Input 

� measure_data[t]: (real array) measurement data, t: current time when a measurement is finished 

� s: (real value) standard deviation of the measurement data 

� thresh: (real value) threshold value of the degradation state 

� initial_x[2]: (real array) mean and standard deviation of the initial state 

� initial_z[p,2]: (real array) mean and standard deviation of the initial model parameters, p : number 

of parameters 

� n: (integer value) the number of particles 

Output 

� TTF[n]: (real array) time to failure 

Variables or Arguments 

� x[k,n]: n particles of the estimated state 

� z[k,p,n]: n particles of the parameters 

� {: (real value) time step 

 

# initial distribution of the state x and the parameters Θ 

x[1,:]=random.normal(initial_x[1], initial_x[2], n) 

for i in (1:p) 

Θ[1,i,:]=random.normal(initial_Θ[i,1], initial_Θ[i,2], n) 

end 

 

k=1 

While min(x[k,:]) < thresh 

k=k+1 

x[k,:]=f(x[k-1,:],	Θ[k-1,p,:]) # Equation (8) 

 

if k <= length(measure_data)  # updating with measurement data 

likel[:]= exp(-(measure_data[k]-x[k,:])^2/(2*s[k]^2))/(s[k]*(2*pi)^0.5)) # calculating likelihood 

 # Equation (3, 4) 

cdf[:]=cumulative_sum(likel[:])/ sum(likel[:]) 
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r=random() 

for i in (1:n) # resampling by inverse transform sampling (Figure 2) 

index=count(cdf[:] < r) 

temp_x[i]=x[k,index] 

temp_Θ[:,i]= 	Θ[k,:,index] 

end 

x[k,:]=temp_x[:] 

Θ[k,:,:]= temp_Θ[:,:] 

|}~| 

x[k,:]=random.normal(x[k,:],s) # prognosis 

end 

end 

 

for i in (1:n) 

TTF[i]=count(x[:,i]<thresh) 

end 

 

return TTF[:] 

Figure 7. Pseudocode of particle filtering 

 

Figure 8 shows the results obtained using particle filtering with differing amounts of 

measurement data from 3 EFPY to 12 EFPY. The total number of particles is 10,000. In the 

figure, the dots, solid line, and two dotted lines represent the measurement data, threshold, mean, 

and the 5th and 95th percentiles of the estimated burst probability, respectively. The horizontal 

line gives the threshold value and the vertical line indicates the current time when the 

measurement is finished. In addition, we present the mean, median, and 5th and 95th percentile 
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values of the obtained TTF distribution in Table 3. As expected, the results show that uncertainty 

decreases as the updated amount of measurement data increases. 

 

 

Figure 8. Prognostic results using particle filtering with different amounts of measurement data 
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Table 3. Prognostic results using particle filtering with different amounts of measurement data 

Number of 
measurement 

data 
Mean Median 5th percentile 95th percentile 

3 15.669 15.350 11.464 20.830 

6 17.950 17.596 14.524 22.512 

9 18.459 18.322 16.424 21.068 

12 16.923 16.891 16.137 17.802 

 

Additionally, to identify the effect of the number of training data sets on the prediction accuracy, 

we performed a sensitivity study for the number of training data sets. We constructed the model 

with 10, 50, 100, 150, and 200 training sets, and Figure 9 shows the results of prognostics from 

the constructed models. In the figure, the results show a similar tendency among all cases, except 

for the case with a very small number of training data sets. If the number of training data sets is 

above a certain number, then it does not significantly affect the prediction result. 
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Figure 9. Prognostics results with different numbers of training data 

 

3.2 Sensitivity analysis with respect to measurement uncertainty 

Particle filtering is a method for using specific information as well as generic information. It 

reflects specific information to the generic correlation and updates its parameters. From the 

viewpoint of a Bayesian update, the prognostics result using the generic information corresponds 

to prior information, while that of updating the specific information belongs to posterior 

information. In this case, the specific information takes the role of the likelihood. Obviously, the 

confidence of prior information and likelihood affect the result of prognostics. Therefore, for 

optimized results, balancing the uncertainty of prior information and the likelihood is important. 

In the above section, Figure 4 explained how the prior information and the likelihood contribute 

on the TTF and its standard deviation. The control of the uncertainty of prior information and the 
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likelihood is done by adjusting the uncertainty of measurement ���� !"�, which affects the 

update phase. Figure 10 shows the results for various levels of uncertainty in the measurement 

data represented by ���� !"�. As the uncertainty gets smaller, the significance of the likelihood 

becomes larger, which means the measurement is dominant in determining the prognostics 

results. In contrast, when uncertainty in the measurement data is larger, the prior generic 

information is more important and weighs more in the posterior. Each model is updated until 6 

EFPY with the same uncertainty in the measurement data, ���� !"� = 0.01. Then, at 7 EFPY, 

the updating is done with the different levels of uncertainty, as indicated in the legend. 

Correspondingly, in the figure, we see that with large uncertainty, the updated model is closer to 

the original model (non-update), whereas, with smaller uncertainty, the updated model is closer 

to the measurement data at 7 EFPY.  

 

 

Figure 10. The results of prognostics with different uncertainty in the measurement data 
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Figure 11 shows the predicted distribution and likelihood for the measurement data. The figure is 

a histogram of predicted particles and the bold line is the fitted normal distribution. With small 

uncertainty in the measurement data, the likelihood is concentrated on the particles that are close 

to the measurement value by Equation (2). Therefore, the posterior distribution is also close to 

the measurement. With large uncertainty, the likelihood is scattered out to all particles regardless 

of measurement data. Therefore, the posterior distribution is closer to the prior distribution. 

 

  

Figure 11. Likelihood with various uncertainties of measurement 
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4 Conclusions 

Basically, ageing and integrity management of components and systems in NPPs are based on 

the controlled generic information and plant-specific data from periodic inspection. Due to the 

high standards for ensuring safety, it is hard to find the applications of particle filtering method 

in nuclear fields, which is commonly used for updating model parameters in various engineering 

applications. Therefore, this paper introduced the particle filtering method and demonstrated its 

procedure through case studies. Particle filtering is a model-based method that allows updating 

of a generic correlation (i.e., based on generic information) with measurement data (i.e., specific 

information) to predict the TTF. Advanced condition monitoring technologies can allow for the 

effective use of specific information for the individual components and systems, so the 

knowledge update process on the basis of observation such as the particle filtering is expected to 

be an emerging trend even in safety-critical fields. 

The development of the method was exemplified by a case study regarding steam generator tube 

degradation considering Paris' raw. Thus, the effect of measurement uncertainty was evaluated 

by a sensitivity study. The sensitivity study demonstrated how to update the model while 

balancing between generic and specific information according to their uncertainty. Nevertheless, 

there are some limitations. In practice, it is not easy to define the uncertainty for existing and 

new information because of various error factors such as malfunctioning of measuring 

instrument, human error and so on. Furthermore, it is not clear whether a plant-specific data can 

modify a degradation evaluation model at a decision-making situation due to managerial or 

regulatory characteristics, which needs inter-disciplinary study along with field tests. 
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