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Abstract

The current framework of management of natural ggeline systems, based on off-line
simulation, is facing challenges because of theegging complexity, uncertainty and a number of
time-dependent factors. To be effective, it reqigomprehensive knowledge of system

characteristics, accurate initial and boundary @@mrd. In an attempt to circumvent these
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problems, in this work we propose to use the deaming method in the natural gas transmission

system operation and management context. A datardpprediction method is developed from

real-time data of operation pressure and gas cqoisum Specifically, the deep learning method

is combined with the data window method and stmattgontrollability theory to predict the

conditions of gas pipeline network components. d&ka window method is applied to reconstruct

the data structure and build a “memory” for thepléEarning method. Structural controllability

theory is applied to extract critical parameters, feducing the problem size. The developed

method allows accurate and efficient predictionspeeially in abnormal conditions. For

demonstration, the method is applied to a compéexaipeline network. The results show that the

developed method can provide accurate real-timdigirens useful for reducing potential losses

in operation, and perform efficient and effectivamagement of the gas pipeline system. In the

case study, the average prediction accuracy iehitgan 0.99.

Key words: natural gas pipeline system; deep learning; daitgemr structural controllability

theory; real-time prediction

1. Introduction

Natural gas travels a long distance, from sourbesugh pipeline networks to the different

kinds of customers. Accurate and timely operatiensure reliable supply to the customers. This

requires timely precise knowledges of conditionthefsystem and of its components (Chertkov et

al. 2015). Hence, it is crucial to use efficientaffective methods for accurately predicting the

system dynamic responses and the components fianditions.



Off-line simulation is typically applied for the alysis, decision support and optimization of
pipeline networks (Fasihizadeh et al. 2014; X. Zhahal. 2016). Many efforts have been made
for the improvement of the numerical models (Wahgle2015; Pambour et al. 2016a) and model
solvers (Wang et al. 2018; Behbahani-Nejad & BaghBéd0). Some unconventional off-line
simulation methods have also been developed (Matdatial. 2016; Uilhoorn 2017). However, an
accurate simulation requires exact conditions, eamprehensive system characteristics, accurate
initial states and imposed boundary conditions.s€hare unfortunately difficult to obtain in
practice. Furthermore, off-line simulation has idiffties in accounting for the time-dependent
factors of the system dynamics and in treatingutheertainties in the model and its parameters.
Finally, the computational burden can be quiteifigant for complex pipeline networks.

Form a different context, we observe that the imtions brought by artificial intelligence,
machine learning and big data are changing thervigif traditional energy industry. Many
researches have been carried out attempting te salvous challenges which energy systems are
currently facing, e.g., system reliability and sligh(Zio & Di Maio 2010; Fang & Zio 2013; D.
Zhang et al. 2016), operation efficiency and cositio| (Hegde & Gray 2017; Azadeh et al. 2016),
renewable energy management (Lou et al. 2016) awloement issues (Tan et al. 2016). The
application of techniques of forecasting (Wang kt2816; Kalantari-Dahaghi et al. 2015),
classification (Hu et al. 2010; Pooyan et al. 204/ optimization (Azadeh et al. 2016; Xiong et
al. 2018) has been successfully explored in diffeemergy systems, to the benefit of regulators,
customers and operators. Besides, recurrent archdmqeural networks are among the best
choices for dynamic system predictive modeling éviaét al. 2015; Lashkarbolooki et al. 2013;

Guler & Ubeyli 2006; Giiler et al. 2005).



In natural gas pipeline network systems, large artgoand various types of data of operation,

device status and gas consumption are generatedodladted by SCADA (Supervisory Control

and Data Acquisition) systems. Based on these (tzitg, some efforts have been made for online

dynamic state estimation and forecast of gas demahe online state estimators are mostly

developed based on filter models (Durgut & Lebl&glu 2016), which are applied to estimate

the real time state of pipeline networks. Applica of machine learning for forecasting natural

gas demands have drawn great attention from be#fareh and practice perspectives (Panapakidis

& Dagoumas 2017; Yu & Xu 2014). Many algorithms édeen developed to predict natural gas

demand over different time horizons.

In natural gas pipeline networks, the future staiésthe components and the system

dynamics depend on the previous state history atedrel disturbances. Because of the complex

system structure of the pipeline network and theagex transient process of gas flow in the

pipelines, traditional machine learning methods ehalifficulties in accurately regressing the

dynamic behaviors of complex gas pipeline networks.

Recently, deep learning, a type of machine learmilggrithm, has drawn a lot of interest

from industry and academics. Deep learning has@rbeen successfully used in object detection

(Kong et al. 2018; Hu et al. 2017), dimensionalégguction (Turati et al. 2017), natural language

processing (Evermann et al. 2017) and other apjgitea Deep architectures, or multiple layer

architectures, are used to extract features in ldgex by layer, and the inherent features of the

dynamics in a given pipeline system can be founthfthe data (Hinton & Salakhutdinov 2006).

Indeed, the complicated dynamic behaviors of apgasline network can be “learned” by deep

learning without prior knowledge, and the systematyics can be accurately predicted. Although



deep learning has been applied in the area ofalagas pipeline modelling and analysis, most of

the works focus on the analysis of single unitglisas compressor stations) or pipelines (Qiu et al.

2015). The application for the analysis of the dyits of a complex pipeline network needs to be

further explored.

In this paper, we develop a deep learning-basetiaddb predict system dynamic behavior

and component states in large, complex naturalpgasline networks. A stacked-auto-encoder

model is trained in the layerwise greedy fashiod applied for learning the system dynamic

features. The correlations of temporal and spédietbrs are inherently considered in the model.

Network structural controllability theory and thatd-window method are integrated with the deep

learning method, for a more efficient use of theada

The rest of the paper is organized as follows: iBe@ introduces the development of the

deep learning prediction model and the methodaim it; the data-window method is introduced

in Section 2.4. The data selection method, basededmork structural controllability theory, is

introduced in Section 3. In Section 4.1, the acyraf the developed method is verified by

benchmarking against shallow neural networks apgpa@t vector machine (SVM), for a triangle

pipeline network; in Section 4.2, the deep learningdel is applied to a complex natural gas

pipeline network in both normal and abnormal candg, and the results are discussed in detail.

The main contributions of this work include theldaling:

(1> A method for natural gas pipeline dynamic behayigediction is developed. The

deep learning method shows a stable performancer uiffierent conditions and is

able to provide effective information for decisisapport. It can accurately predict

the system responses under abnormal conditiongutifirior knowledge, which can



help to improve the efficiencies of preventive acs and to reduce potential losses.
(2) To some extent, this work paves the way for theliegdon of deep learning to
complex gas transmission systems. Indeed, this wbdws that deep learning is
very powerful in learning the complex dynamic featiof gas pipeline networks,
which is crucial for demand-side management, deteend early-warning, decision

support and so on.

2. The deep learning prediction method

Deep learning has multiple processing layers, whidtw learning features of data without
prior knowledge (Hinton & Salakhutdinov 2006). hist section, inspired by the work performed
by (Lv et al. 2015), a stacked auto-encoder (SABJlehis applied for learning generic features of
condition data in gas pipeline networks. A regmasdayer is stacked on the top of the SAE to
perform the prediction based on the learned festuF®r completeness of the paper, the
underlying principle of the SAE and of the trainimigocess are recalled in what follows.
2.1 Auto-encoder

An auto-encoder is a neural network that attengptedonstruct its input at the output layer,
after passing through intermediate, hidden lay&rsample auto-encoder model, which has one
input layer, one output layer and a hidden layepresented in Fig. 1. Given a training sample,
X={X1, X2, ..., X3}, a@n input x; is firstty encoded by an auto-encoder model to ddém
representatiog(x;) based on Equation 1, and thg€r,) is decoded back afx;) by Equation 2:

y(x) = f(Wyx+D) 1)

Z(x) = g(W,y(x) +¢) 2



where W, represents the weight matrik; represents the vector of encoding bidg; is the

decoding matrixg is the vector of decoding bias. In this papergitosigmoid” functions of the

type in Equation 3 are applied foandg:

1
f(x)= 3
(=" ®
By minimizing the error of reconstructiok)( the model parameteécan be obtained:
. 1L
@ =arg, minE & z )= arg mlrJEZ”)q -z |y @)
i=1

[nput layer (x) Output layer (z)
i s | Hidden layer () s \

W,

Encoding Decoding

b

Fig. 1 A sample auto-encoder

Sparsity constraints are supplemented into thecttagefunction, considering that if the size

of the input layer is no larger than that of theédan layer, the above method may potentially learn

the identify function. By this way, the auto-encodmcomes a spare auto-encoder, and the

reconstruction error minimization problem is tramwsfied to:

!
S=E(x.2)+¢@) KL(p|5,) 5)
=1

whereH is the number of hidden unitgrepresents the weight of the sparsity teonrepresents



the sparsity parameter, which is usually a smalluesa(close to 0); KL(,OH,bj) is
Kullback-Leibler (KL) divergencéin Equation 7; ﬁj is the average activation of the hidden unit
j (in Equation 8).

. 1-
KL(p|,) = plog -+ 1~ p)log=—2 (6)
P 1-p

P, :%Zyj (x) )

2.2 Stacked auto-encoder s

Recent works of machine learning have shown thatgrewer of a deep architecture to learn
highly non-linear and complicated patterns in d&& et al. 2015). Inspired by these works, a
SAE is developed in this work, made of several @&mcoders stacked one on top of another, in
which the input of the upper layer is taken from tutput of the lower hidden layer. The SAE has
a significant advantage for finding the highly norear patterns between the collected data
(current and historical) and to extract the featurethe dynamics (Lv et al. 2015).

To use the SAE model for condition prediction irtunal gas pipeline networks, a standard
predictor is stacked on the top layer. In this papelogistic regression layer is applied for
supervised system condition prediction. The predieind the SAE model comprise the whole

deep learning model for condition prediction inurat gas pipeline networks, as illustrated in Fig.



Future pressure values at nodes, future
flow rates in pipelines, future working
conditions of suppliers, UGSs and
LNG terminals

Predictor

Stacked auto-encoder

Pressure values at selected nodes and
demand data of the customers,
structured by the moving data-window

Fig. 2 lllustration of the deep learning model éor-line condition prediction for natural gas

pipeline networks

2.3 Training process and algorithm

BP method can be directly used to train conventiomaral networks, by gradient-based

optimization. Unfortunately, deep neural netwonrted by BP method have bad performances.

On the contrary, the greedy layerwise unsuperviakgbrithms have been developed with

successful results (Bengio et al. 2007). The keintpoare: firstly, the greedy layerwise

unsupervised algorithm is used to pre-train theodeswork layer by layer, from the bottom to the

top; then fine-tuning based on BP is applied tceettire parameters in the model in a top-down

way, to improve performance (Hinton et al. 2006)e Training procedure is shown in Fig. 3.

We notice that the deep learning model needs tadhested and re-trained with new data on

a regular basis, to ensure the model is capabieaintain a good performance under a changing

environment.



| Collected data I

| Training samples |

Set the values of ¢, p and randomly initialize
weight matrices and bias vectors (in Section 3.1)

Unsupervised training of hidden Test samples
layers via the greedy layer-wise
algorithm

l

Use the output of the last layer as
the input for the prediction layer,
and initialize its parameters
randomly

l

Fine-tuning the whole deep
network

| Prediction |

| Evaluation of the performance

Fig. 3 The flowchart of the training process
2.4 Moving data window method and model updating
For a short-term condition prediction, the futuvelation is determined by the conditions of
the recent past (depending on the scale of theonktsystem). Given that, we need to reconstruct
the historical data for the prediction model in@rdo create a “memory” of the effective data.
Hence, in this paper, we apply a data-window mettzdwu et al. 2017), which is illustrated in

Fig. 4.
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Fig. 4 The schematic illustration of the movingadafndow method

In Fig. 4, the length of a moving data window isdmaf two parts: input (white region: data
measured in the past) and prediction (dark reglata predicted in the future). At every prediction
step, the data in the white region are used ag wipihhe deep learning model and the data in the
dark region are the predicted future data. At epmdiction step, the overlapped previous
prediction data (Prediction |) is replaced by tlegvrprediction results obtained (Prediction II), for
improved prediction performance.

A proper design of the length of the moving datadeiw can contribute to a good prediction
performance, with lower computational storage céstually, the length of the white region
works as the “memory capacity” of the deep learmrglel. Hence, a well-designed data window
helps the deep learning model efficiently rementhest relevant data for prediction. In this paper,
for convenience of illustration, we assume that filtere condition of the natural gas pipeline
network is determined by the past system condit{tmes internal property) and the fluctuations of
gas demands (the external influence), based onhwhicriterion for the design of the input
windows is developed as Equation 8:

S=max{T,max{R,,P,..R}} ®)
whereSis the designed length of the input pdrtis the longest time that a disturbance takes to
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spread to the whole pipeline network syst&ris the shortest period that can influence theréutu
demand evolution of gas demand\ccording to the works for demand prediction, deenands of
gas can be influenced by various of factors (ssclveather, demand history, population and so on)
(Karadede et al. 2017). In this work, without laglgenerality, we only consider demand history.

For the prediction part, the length of window iwade-off between accuracy and efficiency.
A longer prediction contributes more to the operatand management, but the accuracy of
prediction will degenerate due to the increasingeutainties. Theoretically, the length of
prediction window should be within the valug) (calculated by Equation 8, because of the
prediction mechanism of the developed method. Hewen practice, it should be designed based
on the needs of the real world applications ancettperience of the analysts. In general, the deep
learning model is pre-trained and the related ct#le real-time data are organized by the data
window as the input. The deep learning model wllupdated by new data collected in a specific
time interval. In the future, we will develop theap learning model in sequential mode, which
can further improve the ability of the model.
3. Data preprocessing for input to the deep learning model

Direct use of the sensor collected data may leadigh storage burden and degenerated
prediction (Xue et al. 2017). Valuable data mustélected from the collected data, to reduce the
problem size and convert the “big data” to “wis¢ada

The dynamic evolution of the gas pipeline systendrigsen by pressure (Pambour et al.
2016b) and the control theory enables that theesy&te fully controlled. Then, valuable data are
the pressures of these elements in the networkiwdre most important for system controllability,
i.e. we can attempt to use the pressure data ficst@and current) of these elements to predict the

12



condition of the overall pipeline network.

In this paper, network structural controllabilitgebry (Leitold et al. 2017) is applied to
identify the elements which can control the ovegas pipeline network. This method has been
used in real-world complex network systems inclgdgas pipeline networks (Han et al. 2015).
The results of the applications show the capabilftgffectively identifying the driver nodes for
the system structural control.

Generally, the natural gas pipeline network is emiby nonlinear processes, but in many
aspects, the controllability of nonlinear systemistructurally similar to that of linear systems
(Chiang & Zavala 2016). Then, the canonical lingad time-invariant dynamics can be used to
identify the driver nodes:

ax(®) = Ax(t) +Bu(t) (©)
dt
where the vectok(t) represents the states of tNenodes in the natural gas pipeline network
system at timd; the NxN matrix A describes the interaction strengths between nodethe
connected structure of the pipeline netwdBkjs an input matrix identifying the driver nodes
controlled by the time dependent input veat(y.

In classical dynamic control theory, Kalman’s racdndition can be used as criterion of
controllability and to identify the minimum numbef driver nodes (Kalman 1963). However, the
classical concept has difficulties when dealindwabmplex pipeline networks and new concepts
of complexity are needed (Zio 2016; Han et al. 200D the classical method is usually applied
to undirected networks, but natural gas pipelinevaeks are directed; (2) to apply the Kalman’s
rank condition, we need to know the weights ofiaKs (i.e. the elements in matri), which are

usually unknown. (3) even if the weights can beraximated, we need a brute-force search to

13



compute the rank for'21 combinations, which is impossible for large fiipe networks.

To bypass the problem, the analytical methods in €t al. 2011) is applied here to identify
the minimum set of the driver nodes. The so-cadfiedctural controllability of a systen\( B)
allows determining the free parametersAnand B. A and B are structured matrices whose
elements are independent free parameters or Zergeneral, a structural controllable network
system is controllable for most of weight combioas, except for several pathological cases with
zero measures (Shields & Pearson 1976). Theredtmestural controllability theory can help to
solve the inherently incomplete information of #lements in matriA.

Based on the concepts of structural controllabiftgory, the matching concept in graph
theory (Leitold et al. 2017) is applied here fonding the minimum set of driver nodes. A
matching set is a set of arcs without common vestin a directed graph G. A matched node is an
ending vertex of an arc in the matching; otherwilse,node is unmatched (as shown in Figure 5).
The pipeline network can be fully controlled if andly if all unmatched nodes are directly
controlled and the input signals can be transmitte@ll matched nodes (Leitold et al. 2017).
Hence, we need to find a maximum match (maximunchiag may be not unique in a given
network), which corresponds to a minimum set o¥elrinodes, which represents a minimum but
effective set for prediction. In a given directedjgh, the maximum matching can be determined
in at mole(N”ZL) steps, wheré represents the number of arcs.

According to the inherent concept of structuraltoafability and the properties of the gas
transportation process, the evolution of the oVegat pipeline network is determined by the
pressure changes of the driver nodes. Hence, wasmthe current and historical pressure data
of these driver nodes to predict the system ewwlutFor a complex pipeline network, this

14



method is capable to significantly reduce the mroblsize, while still achieving a good

prediction performance.

Matched node L
Unmatched node o
Matching link -
Input signal ——— |

Fig. 5 Structural controllability of simple netwark

4. Application

The deep learning model is applied to a simplengfia pipeline network and a part of a
real-world pipeline network. The fluctuations irethatural gas market are not completely random
and are driven by nonlinear dynamics, e.g., chimoshis application, the gas demand fluctuations
are generated by Mackey-Glass model (Equation d@griodic and chaotic time-series model
which is typically used to test the performancespoddictive models because of its chaotic

behavior (Sharma et al. 2016):

dx(t) _ ax(t-r,,) _
dt _l+XC(t—TM)

bx(t) o1
where T,, is the time delay parameter (>16.8), which deteesithe chaotic behavior of the
time series. In this case, the value B, is set to be 20. The parameters igg.c andb are
constantsa=0.2,b=0.1,c=10. The b\ Runge-Kutta method is used here to generatertteegeries
data and then the data is sampled at a given aitelrv this chaotic times series, current data
values are dependent on those of the past, whgimitar with gas demands fluctuations. Further,

a random term (of 1% of the nominal value of theggated gas demands) is introduced, to make

the application more realistic.
15



The network “real-time” operation data are generaty TGNET. Developed by Energy

Solution, TGNET is a commercial software for steasigite and transient thermal-hydraulic

simulation of gas pipeline networks (Faertes eR@lL0). This software has been widely used in

many areas, such as, pipeline design, risk assagsomntingency planning and so on. The

simulation is carried out based on the followingngiples and assumptions:

(1) The active components are set at specific obnmtodes, with desired set values;

(2) In the normal scenario, the system conditioanges along with the fluctuations of

demands;

(3) System conditions data are collected at giiree tntervals (each 15 minutes in the case)

by pressure sensors and flow rate sensors.

In practice, the situation is more complex buthis tvork we mainly focus on deep learning

and its ability to predict the nonlinear evolutigmocess of gas pipeline networks.

The size of the input layer of the deep learningdehds determined by the input data,

selected by the structural controllability and mstoucted according to the data-windows. The

structure of the hidden layers (i.e. the numbehidflen layers and the numbers of each nodes in

each hidden layer) is founded based on the predigerformances, by “try and error” based on

grid search (Lv et al. 2015). The system conditwhgh are predicted as output are the pressures

of the network nodes, the average flow rates irpthelines and the amount of gas supplied by the

suppliers.

For effective learning, the range of input data rmsemalized within [0, 1]. Considering the

big differences between the data sets collectem tidferent parts of the pipeline network, the

normalizations are performed separately for eath skt.

16



The parameters of the equations in Section 2.1ohtite training process are: the weight of
the sparsity term is 0.75; the average activaBdh6; sparsity parameter is 0.0004.
To present the way to use the developed methodfldiaehart of the whole process is

showed in the following Figure:

Collect data

YES

Abnormal events happen?
Reach the update period?

Select input data by structural
control theory

Update the data set and
retrain the model by the

process in Section 2.3 Organize the input data by Determine the size of data
data window window by Equation 8

Normalize the input data

Input the data into the trained
deep learning model

l

| De-normalize the model output |

l

| Output the prediction |

Fig. 6 The flowchart of the application processhaf whole method
4.1 Triangle pipeline network
We consider the simple triangle pipeline networkFig. 7 and benchmark the developed
deep learning model against two conventional machéarning methods-support vector machine
(SVM) and BP neural network. We choose the simgvark so as to eliminate the inherent
advantage of the deep learning model in procedsimglata. To prove the advantage of the deep
learning model over the shallow neural network #mal classical machine learning model, the

shallow BP network only has one layer. But the paai@rs of the shallow BP network and the
17



SVM model have been well designed by “trial and®rrto make sure the results can represent

their best abilities. Node 1 is the supplier andié®?2, 3 are the customers. The control mode of

the supply node is pressure-controlled (maintairogstant pressure of 5 MPa) and the control

mode of the customers is flow rate-controlled (Hwmindary conditions of the flow rates are

shown in Fig. 8). The diameters of the three pigsiare 0.6 m and lengths of pipelines 1-3, 1-2

and 2-3 are 80 km, 90 km and 100 km, respectivdig parameters and the algorithm of the T-H

simulation are chosen according to the defaulingstiof the TGNET software.

In this case, the size of the input window is 10rscand sizes of the prediction window are

selected as 3 hours, 5 hours and 9 hours, in dodéest the prediction performances under

different lengths of prediction time. For the simpletwork, we assume that the loads at the two

demand sites and the pressure of Node 3, whichsa as the input of the prediction model, can

be collected. Therefore the input size for the jtexh problem of the triangle network is 120 (the

length of the input window is 10 hours and the dargdrequency is every 15 minutes). The T-H

dynamic simulation is carried out for 1000 hourd #re results are organized by the data window

as data sets (with the size of 4900) for modelniingi, adjusting and testing, following a

“50%-30%-20%" partition (50% data for training thedel, 30% for adjusting the model and 20%

for testing the prediction performance). The modgilimization and validation are performed

based on different data sets, to make sure thelnsodeneralized. The structures and settings of

the deep learning model will change along with ldrggth of prediction time. In the “trial and

error” optimization, the sizes of the hidden layars chosen from 2-6, and range of the number of

the units in the hidden layers is [300, 250, 2080,150]. For the 3 hours prediction, the best

architecture is a two-layer with hidden units oD 150}; for the 5 hours prediction, the best

18



architecture is a two-layer with hidden units ob{R 100}; for the 10 hours prediction, the best

architecture is a three-layer with hidden unit$250, 150, 150}.

Node 1

Node 2 Node 3
Fig. 7 Layout of the triangle gas pipeline network

Portions of the generated demands at customer N&8eare shown in Fig. 8, from which
we can see that the generated chaotic demand dat#o asome extent periodical, but not

completely cycling, like the changes of demandgasf in real world.
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Fig. 8 The generated demands at customer Nodg9-2430 hours)

The prediction performance is measured by threécésd mean absolute error (MAE),
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root-mean-square error (RMSE) and mean relativer efMRE). In Tables. 1 and 2, the
performances of different methods are comparedleTab presents the results of pressure
prediction of customer Node 2 and Table. 2 prestdmsresults of gas flow rate prediction at
Supply node 1. From the Tables, we see that thp E@ening model is more accurate than the
other competing methods, for the different lengthgrediction time. From Tables 1 and 2, we can
observe that the accuracy decreases with increasadiction time. Generally, this is because the
strength of the relationship between the currentlitmn and the future condition decreases as the
prediction time horizon increases, and accordimytyeases the difficulty for the neural networks
to learn such relationship. To overcome this issudrolled recursive processes that make use of

the predictions can enhance the ability of the deeming model.

Table 1 Prediction performance comparison of thepdearning model, the BP Neural Network
and the SVM, based on the results of pressureqtieaiof customer Node 2 (x1@a)

Task The deep learning model BP Neural Network SVM
MAE RMSE MAE RMSE | MAE RMSE
3 hours prediction 2.90 3.45 12.63 17.2p 17.11 @2.3
5 hours prediction 3.92 4.69 16.99 21.79 19.39 &2.9
9 hours prediction 4.58 5.67 25.78 27283 27.18 (Bl.1

Table 2 Prediction performance comparison of thepdearning model, the BP Neural Network
and the SVM, based on the results of gas flowpegdiction of supply Node 1 (Nifs)

Task The deep learning model BP Neural Network SVM
MAE RMSE MAE RMSE | MAE RMSE
3 hours prediction 0.88 1.04 3.63 4.91 500 6.32
5 hours prediction 1.15 1.37 5.06 6.43 573 6.75
9 hours prediction 1.31 1.43 6.00 6.32 794 971

The visual displays of the results of MRE are giuerfrigs. 9-11 in terms of the Empirical

CDF, which describes the variability of the preitins of the system conditions due to the
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stochasticity of the demands. Also these resutisvghat the deep learning model outperforms the

BP neural network and SVM. For the pressure priegicthe deep learning model has an accuracy

of more than 99% at any length of time, and mostsofiow rate predictions have an accuracy of

more than 98%.
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Fig. 9 Performance comparison based on the emp@io& of the relative error of prediction

results (3 hours prediction)
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4.2 Complex gas pipeline networ k
The deep learning model is applied to a relativedynplex gas pipeline network, which
comprises two pipeline importers, 37 pipelines aftdength of approx. 1100 km, diameters
ranging from 950 mm to 1014 mm), 23 demand sitedyding city gates, factories, power plants
and export stations), seven regulation stations, d@mpressor stations (pressure ratios ranging
from 1.02-1.18), one LNG terminal and one UGS. Tdmmtrol modes of the two pipeline
importers are pressure-controlled, while the LNG®miral and the UGS are set at flow
rate-controlled modes. The boundary conditions hef flow rates at the demand nodes are
generated by the model of Equation 10. The suppggures provided by the two compressor
stations are maintained at the set points of 7 NIRgorter 1) and 6.5 MPa (Importer 2),
respectively. The regulation stations are set astive Modes. The gas pipeline network system is
presented in Fig. 12. In the Figure, the custoraeesrepresented by the polygons and the nodes

selected by structural controllability are at thedes linked to Customer 6, Customer 13,

Customer 10 and Customer 8.
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The size of input data window is chosen to be 1Zfiand the input size is 1200 (including

21 customer demands and 4 selected nodes). Thdyh&mic simulation is carried out for 2000

hours and the results are organized by the datdowirand used as data sets with the size of 7900,

for model training, adjusting and testing, follogithe same “50%-30%-20%" principle. In the

“trial and error” optimization for the condition d@fiput of demands and selected nodes, the sizes

of the hidden layers are chosen from 2-6, and dhge of the number of the units in the hidden

layers is [2000, 1750, 1500, 1250, 1000, 750, 5B6%.the 5 hours prediction (the benchmark in

this case), the best architecture is a three-laytr hidden units of {1750, 1250, 1250}. The

prediction performances are measured by MAE, RMSEMRE.
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Fig. 12 Layout of the complex natural gas pipelieénvork system
Firstly, to verify the effectiveness of the datdesdon method proposed in Section 3,
comparisons are made of the predictions basedrea tlifferent sets of input data:
A. Pressure data of all nodes and demands data;
B. Pressure data of only the nodes selected basetheo structural controllability and

demands data;
23



C. Only demands data.

The MAE and RMSE results of the three predictiorfgrenances are presented in Tables 3-4,
with reference to gas flow rate predictions andenpressure predictions. In these Tables, we can
see that the predictions based on input sets Aamave similar accuracy, and definitely superior

to that based on input set C. This is also showthbyempirical CDF of the relative error values
shown in Fig. 13.

Table 3 Prediction performances comparison fortthiee different sets of input data and with
reference to pipeline average gas flow rates piiedis (Nn/s)

Task Not-preprocessed dataPreprocessed data No pressure input
as
MAE RMSE MAE RMSE| MAE RMSE

5 hours prediction  0.3107 0.452( 0.3076 0.4499 68B141.9510

Table 4 Prediction performances comparison fortthiee different sets of input data and with
reference to pressures predictions (Pa)

Task Not-preprocessed dataPreprocessed data  No pressure input
as
MAE RMSE MAE RMSE | MAE RMSE

5 hours prediction  1290.74  1606.79 1254.31 1579.8249.60 8597.88

1 P 1
-ﬁ'
!,‘ — Preprocessed data
0.8 f No pressure input 1 0.8
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E % | No pressure input
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Relative error of pressure Relative error of flow rate

%107

Fig. 13 Performances comparison based on the ex@ap@DF of the relative error of the
prediction results, based on different sets of irgata

To test the capacity of the developed model oregfit time lengths of predictions, the
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predictions are performed for 2 hours, 5 hoursp8r$, 10 hours and 15 hours. The MAE and
RMSE results are presented in Table 7 and the eapiCDFs of the relative error values are
shown in Fig. 14. From these results, we can sae ttte deep learning model gives good
performances for predictions upto10 hours and #iees of MAE and RMSE in Table 5 double
from 2 hours to 15 hours. In Fig. 14, the gap betwthe empirical CDFs of 15 hours and 10
hours is larger than that of 5 hours and 10 hours.

From Tables. 4-6, we can observe large errors @ pghessure predictions due to the
normalizing and de-normalizing processes. Howdterrelative errors (presented in Figs. 12-14),
which reflect the true prediction ability of the ded, are maintained at a relatively low level
(10*-10%). Besides, an accuracy improvement can be obseryedommparing the results in
Section 4.2 and those in Section 4.1, which meaas the prediction performance can be
enhanced by increasing the size of data, evereiictmplexity of the network has significantly

increased.

Table 5 Prediction performances comparison basaetifinent time lengths of prediction

Pressure (Pa) Flow rate (Nis)
MAE RMSE MAE RMSE

Task

2 hours prediction  1145.42 1462.24 0.2340 0.3622
5 hours prediction 1254.36 1579.88 0.3076 0.4499
8 hours prediction 1571.41 1984.27 0.3527 0.5188
10 hours prediction 1662.94 2108.31 0.3656 0.5373

15 hours prediction 2843.90 3664.89 0.5828 0.8656
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Generally, the data collected by sensors are ndisg. prediction model should, then, be

capable of making accurate predictions with noigtadThus, five levels of artificial noises are

introduced (i.e. £0.5%, +1.0%, +1.5%, +2.0%, +2.6%4he nominal values of input data). In this
case, the artificial noises are added on the nwadesimulation results, to analyze the robustness
of the deep learning model under the noises fragndéita collection process. The corresponding
empirical CDF results of the predictions are shamwvfig. 15. In the Figure, we can observe that
the predictions are accurate with the differentelswof noise considered. However, there is a
relatively significant jump of the results from %0noise to 1.5% noise, so that to reduce noise

below the level of 1.0% could be effective for potidn accuracy in this case.
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Fig. 15 Performances comparison based on the e@p@DFs of the relative error values of the

predictions, based on under different levels ofei

The deep learning model is also capable to effelgtipredict the system conditions in

abnormal scenarios. In general, crises of natuea gupply security result from abnormal

increases of demands and/or decreases in the ttapbsources. To analyze this, predictions for 5

hours are performed under three abnormal scenarios:

Scenario 1: Abnormal demands increases at Customers 4 anth23demand of Customer
4 suddenly increases to 250% (from 1720 to 1740 )oand the demand of Customer 23
suddenly increases to 300% (from 1820 to 1850 hours

Scenario 2: Sudden pressure decrease at Pipeline Import€hd. pressure of Importer 1
suddenly degenerates to 6.9 MPa, from the nornliaévaf 7 MPa (from 1820 to 1870 hours).

Scenario 3: Sudden supply capacity degeneration of the UG. Jupply capaciy of the
UGS suddenly decreases to 20% (from 1720 to 17@tsho

Considering the learning principles of the deepralenetwork, we introduce two changes
when generating the training data sets for eacloraiad scenario. For example, in Scenario 2,
two pressure drops of Pipeline Importer 1, namebp dours’ pressure drop to 6.89 MPa and a

50 hours’ pressure drop to 6.92 MPa, are introdutége system simulation.

The results of predictions of the system conditi@re illustrated from the different

perspectives, i.e. gas flow rates of the main sepplpressure controlled), pressures at demand

sites, pressures of the suppliers (flow rate cdetth flow rates of important pipelines, which

managers and operators are more concerned withastige (Pambour et al. 2016b). For every

perspective, typical results are analyzed in detldw.

The results of Scenarios 1-3 are presented in E&20.

We observe that the evolution of the pressuredaausk for the suppliers, delivery point and

the important connection pipeline are accuratedjmted, which means that the deep learning
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model is able to provide timely information to soppoperation and management in abnormal

conditions.
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Fig. 16 Predictions of flow rate of Importer 1 (8ados 1-3): Figa represents the results in

Scenario 1; Figb represents the results in Scenario 2; Eigpresents the results in Scenario 3.
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Fig. 17 Predictions of flow rate of Importer 2 (8ados 1-3): Figa represents the results in

Scenario 1; Figb represents the results in Scenario 2; Eigpresents the results in Scenario 3.

28



Figs. 15-16 show that the deep learning is abjgedict the responses of the two suppliers in

abnormal scenarios. For intuitive application imgtice, the concept of capacity buffer area is

introduced in the Figs. By comparing the predictiamd the maximal capacities, supply security

can be predicted, which can be helpful to operatmrespond in time and make efficient use of

supply capacities.
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Fig. 18 Predictions of pressure of the UGS (Scesdlt3): Figa represents the results in
Scenario 1; Figb represents the results in Scenario 2; Eigpresents the results in Scenario 3.
Fig. 18 presents the predictions of the pressuheesaof the UGS. In the Figs, we can
observe that the pressure drops, which help maintpistable supply of gas under abnormal
conditions, are effectively captured by the deeprimg model. This type of ability is important
for estimating the conditions of critical comporeraind making timely preventing decisions, to

ensure the reliability of supply of natural gas.
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Fig. 19 Predictions of pressure of Customer 1 (&c¢es 1-3): Figa represents the results in
Scenario 1; Figb represents the results in Scenario 2; Eigpresents the results in Scenario 3.
Pressure buffer, which is defined as the differebeveen the pressure of the real-time
delivery pressure and the contractual delivergnie of the most concerned issues of natural gas
supply security. Fig. 19 shows that the transiaitalviors of the pressure buffer under different
abnormal scenarios are captured by the deep lgamadel. Hence, this can provide a powerful

method to predict security of supply of the custmsrend to guarantee a high level of customer
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Fig. 20 Predictions of the flow rate of connectmpeline (Scenarios 1-3): Fig.represents the
results in Scenario 1; Fig.represents the results in Scenario 2; Eigpresents the results in
Scenario 3.

The profiles in Fig. 20 represent the flow rateotlgh the connection pipeline between
Customer 11 and the multi-junction node, whichnipartant for the supply security considering
congestion problems. By comparing the true andipiesdi flow rates, we find that the predictions
can effectively reflect the true future trends akdlows, which indicates that the deep learning
model can be used to optimize the plan of gasmm&sson according to changing conditions and
ensure a more reliable operation and supply.

Table 6 Prediction performances analysis for Scesdr3

Scenario 1 Scenario 2 Scenario 3

MAE RMSE MAE RMSE MAE RMSE
Pressure prediction (Pa) 3380.55 4509.76 2792.3¢1.89| 3633.47 4519.46
Flow rate prediction (Nffls)  1.09 1.67 0.72 1.00 1.03 1.49
Supply prediction (Nris) 2.41 3.02 1.93 2.43 2.14 2.47

Task

However, by comparing the prediction performanaesTable 6 and Tables 3-5, we can
observe a degeneration of accuracy after abnormaaiges occur. This is because only two similar
changes are introduced in the training data andehtires of the complicated dynamic system
properties under these abnormal conditions havdeen learned well enough. In practice, more

data can be used as training data and the dateasel® continuously updated from the fault.
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5. Conclusion

In this paper, we have presented a framework basedeep learning, for the prediction of

the operation conditions of natural gas pipelinevoeks. A prediction model, based on real-time

data, is developed by combining a SAE model witbgression layer. To reduce the problem size,

structural controllability theory has been applied selecting the input data most relevant for

prediction, and a data window has been used tdecee@roper “memory” for the deep learning

model.

The accuracy of prediction of the deep learning ehdths been verified by benchmarking

against BP neural network and SVM, on a case ofiamgle gas pipeline network. The

effectiveness of the proposed framework has beeslyzed and verified from multiple

perspectives, i.e. type of input, length of pradicttime and level of noise, with respect to a

relatively complex gas pipeline network. To analythe deep learning method for abnormal

conditions, three scenarios have been considerbd. résults show that the proposed deep

learning model is able to accurately capture thaeluton of system conditions under different

abnormal changes. The average accuracy of prediotithe working condition within 15 hours is

higher than 0.99. Besides, the deep learning mpksents robust performances and is able to

maintain the high level of accuracy even underlatively high level of noises (from £0.5% to

+2.5% of the nominal values of input data). Alse tase study includes the compressor stations,

the LNG terminals and the UGS, whose working cooilét are changing according to pre-defined

rules, and the results show that the developedadethn make good predictions with changing

working pressures of the LNG terminals and the UGS.
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In future work, we will further improve the deemtaing model, considering other relevant
factors in input and perspectives, e.g., uncegtamanagement, demand response, dynamic
programming, etc. Also, some other powerful inggtice methods, such as ANFIS, advanced
genetic programming, RNN-structured neural netwamd so on, will be considered in our future
work, and their performance will be compared witke tproposed deep learning method. The
relatively large errors in pressure prediction, sealiby the de-normalizing process, calls for a

more effective data-processing method.
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Appendix. Nomenclature

a, b, ¢ constants of Mackey-Glass model SAE stacked auto-encoder

BP backward propagation SVM support vector machine

b  vector of encoding bias UGS underground gas storage

¢ vector of decoding bias W; weight matrix

E error of reconstruction W, decoding matrix

H number of hidden units X input vector of an auto-encoder
KL Kullback-Leibler divergence y vector of thehidden representation
LNG liquified natural gas Zz output vector of an auto-encoder
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MAE mean absolute error 6 model parameter
MRE mean relative error @ weight of the sparsity term
RMSE root-mean-square error T,, time delay parameter

S designed length of the input part
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A data-driven prediction method is developed for gas grids.

Deep learning is used in the gas pipeline system operation and management
context.

Deep learning, datawindow and structural controllability are integrated.

The results show accurate predictions useful for performing efficient

management.



