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Highlights 
 A data-driven method is proposed for prognostics in multi-state operating condition. 

 Features are developed to assess different reliability evolution trends. 

 A sequential Monte Carlo framework is adopted for the online prediction. 

 The proposed method is applied with several electrical and mechanical applications. 

 The prediction accuracy, robustness and speed are evaluated. 
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Abstract—Modeling the evolution of system reliability in the presence of Condition Monitoring (CM) signals is an important issue for 

improved reliability assessment and system lifetime prediction. In practice, during its lifetime, a system usually works under varying 

operating conditions due to internal or external factors such as the ambient environments, operational profiles or workloads. In this 

context, the system reliability can show varying evolution behaviors (follow changing underlying trajectories), which presents new 

challenges to describe precisely the dynamics of system reliability. Thus, this paper proposes a novel data-driven approach to address 

the problems including the identification of varying operating conditions, the construction and dynamical updating of evolution model, 

and finally the online prediction of system reliability, focusing on systems under one common and typical case of varying operating 

conditions, the multi-state operating condition. Experiments based on artificial data and some widely studied real reliability cases reveal 

that the proposed method has superior performance compared with some existing benchmark approaches, in the case under 

consideration. This improved reliability prediction provides fundamental basis for advanced prognostics such as the Remaining Useful 

Life (RUL) estimation. 

 

Key words—reliability prediction, multi-state varying conditions, support vector regression, particle filter, possibilistic clustering 

classification 

 

1. INTRODUCTION 

Generally, reliability assessment focuses on predicting the future system reliability or State of Health (SOH) based on Condition 

Monitoring (CM) signals (observable indicators used to infer the unobservable underlying SOH, e.g., the capacity of a battery or 

the bearing vibration of a gear-box) [1]. It provides fundamental analysis for failure prognostics methods such as Remaining Useful 

Life (RUL) estimation or other methodologies aiming at avoiding system sudden shutdowns, increasing system availability and 

safety, and reducing the cost of accident and maintenance [2]. 

Traditional reliability assessment methods regard the degradation process of system reliability or SOH as determined and seek to 

construct the underlying degradation model from a large number of historical data of similar equipments, without taking account 

the dynamics of operating conditions or specificity for a individual equipment[3-8]. Actually as noted by Bian, by now the majority 

of reliability prediction models are based on the assumption that the prevailing operating conditions are regarded as temporarily 

constant or irrelevant to the evolution process [9]. However, the engineering equipments in practical industrial systems, especially 

in the modern complex systems, usually work under varying operating conditions caused by not only the uncontrollable external 

environment such as ambient temperature or other circumstance factors, but also the controllable operating profiles or workloads. 

In this situation, it is indispensable to consider the effect of varying conditions for advanced reliability assessment. 

Recently, reliability assessment and SOH prediction for equipment under varying conditions have been investigated [10] and a 

dynamic multi-state condition is proposed as a typical model to depict general varying conditions [11]. Under the dynamic 

multi-state condition: 

 I) The system is regarded as operating at one of several discrete candidate states.  

II) The concerned time series consisting of CM signals evolve following different underlying degradation models under different 

state. 

III) The transition between states is randomly happened and can be regarded as a hopping process but not a gradual change.  
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This modeling framework is mostly appropriate when the operating conditions can be clearly distinguished and their effects on 

the reliability evolution processes are significant. For instance, consider the workload induced from an aircraft engine in different 

flight conditions as: takeoff, maximum climb, maximum cruise, loiter, flight idle, taxi, ground idle, and cutoff [9]. The evolution of 

workload in these conditions will be totally different and the switching of conditions is sudden and can be regarded as random, thus 

distinct dynamic multi-state conditions can be recognized in this case.  

Reliability assessment and SOH prediction with reference to equipments operating under this dynamic multi-state condition 

have been investigated from the perspective of statistical modelling and prori inference. The works of [9, 12-14] are some 

examples representing the state of art on this branch of methodologies. 

 The inherent drawbacks of the statistical modelling based methodologies derives from its two strong premises: 1) the 

degradation process of system state should follow a certain statistical model, such as the continuous-time Markov chain, the hidden 

Markov model, the hidden semi-Markov model or the Wiener process, .etc.; 2) the statistical property of the degradation model, for 

example the transition probability matrix for Markov-based models, should be apriori known or estimated. However, for practical 

instances, theoretical statistical models such as Markov chain are very hard to be verified and estimating its transition probability 

matrix is often time consuming or even inaccessible. Thus the applicability of such methods is limited in engineering practitions. 

Another trajectory to address the reliability assessment and SOH prediction resorts to posterior estimation methodologies, e.g. 

machine learning, which asserts system state and system reliability or SOH through a “black box” constructed upon massive 

historical CM data and current measurement [15-17]. Nevertheless, this kind of methods have not yet been explored in depth for 

online SOH prediction under the dynamic multi-state condition, because of the difficulties lying in three aspects: 1) how to identify 

different system state by CM signals, in other words, how to effectively select the feature from CM signals; 2) how to efficiently 

classify the selected features into classes and 3) how to dynamically adapt the “black box”-like prediction model to meet the 

realtime demand for online tasks. 

In this paper, we develop a novel Multi-state dynamic SVR approach to deal with the online reliability assessment and SOH 

prediction problems under the dynamic multi-state conditions. To the authors’ knowledge, this is the first time that such type of 

problems is solved with an online machine learning structure. To begin with, premises of this paper are listed in following: 

1) The whole historical training reliability data are assumed known. 

2) The measured CM signals get updated at each new time step. 

3) Only the effects of different states are concerned. The effects posed by the state transition are regarded beyond the discussion 

of this paper. 

As Fig. 1 shows, the proposed Multi-state dynamic SVR is a framework to posteriorly estimate the system state from recent 

measurements and recursively update the SOH prediction model according to the state estimation through a sequential Monte Carlo 

(SMC) paradigm.  

As we shall show, novelties and contributes of the present work exhibit in the following aspects: 

1) The effect of operating condition on system reliability evolution is analyzed. Especially, the dynamic multi-state operating 

condition is modeled and investigated. 

2) An online machine learning framework is proposed to deal with the realtime reliability assessment and SOH prediction 

problems under the dynamic multi-state operating condition. It improves the existing statistical modelling based methods in two 

points: 1) the priori information of system states and state transition is not required, so it is more universal for practical applications 

Fig. 1 Brief framework of the proposed Multi-state dynamic SVR modelling 
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and 2) it defines different operating states directly from the posterior degradation model of measurements but not from the preset 

operational profiles (though, of course, the alteration of degradation model of measurements is often caused by the change of 

operational profiles). This state classification and identification result shall be more efficient to improve the prediction model. 

3)  A novel feature of “optimal SVR hyper-parameters” with superior representing capacity and implementing efficiency is 

proposed to classify reliability evolution trajectories under different state. The feasibility of this feature derives from a notable fact 

that since the hyper-parameters of SVR are critically decisive to its prediction performance, the optimal SVR hyper-parameters 

filtered by SMC for training degradation trajectories under different state will distribute to different zone in the parameters space. 

In another word, the distribution of the particles (distributed candidate solutions in SMC paradigm) can be actually regarded as a 

statistical description or a feature about the system state. Compared with features obtained from traditional feature selection 

methods such as K-means or Principle Component Analysis (PCA), this “optimal SVR hyper-parameters” feature possesses 

enough representability of depicting the degradation models under different state, but cost fewer computation. 

4) On the basis of “optimal SVR hyper-parameters” feature, an online prediction framework involving recursive SMC and a 

novel Replacement Operation is proposed to dynamically update the prediction model based on the state estimation. This 

implementing framework significantly decrease the computational burden on the online stage. 

5) Improved prediction performance under the multi-state operating condition is achieved by the proposed method. On one hand, 

when the concerned system is recognized as working under a stable state, the PF-SVR will maintain convergence to the 

corresponding clustering center, which leads to a more accurate and stable prediction results in this case. On the other hand, when 

the concerned system is recognized as experiencing a transition between multi-state, the system state estimation can effectively 

help to capture the changing evolution trend and adapt to the new trend much quicker, so finally avoids losing tracking and results 

in better prediction performance. 

6) It is noteworthy that all the online procedures including the system state estimation and prediction model updating are 

performed recursively, meaning that at each time step only the latest measurement are requested to be manipulated but not the total 

historical data. That is to say, the computational cost of the proposed method could be considerable. 

To illustrate the aforementioned strengths, the proposed approach is applied to one artificial case concerning time series with a 

common multi-state condition consisting of four states (increasing, steady, vibration and decreasing) and real reliability cases 

including two cases regarding typical CM signals of Li-ion battery: I) the inner temperature; II) the capacity of full charged, and 

more cases based on standard databases from NASA PCoE (Prognostics Center of Excellence) [18]. Through these case studies, 

the performance of the proposed approach is evaluated with respect to the metric as Root Mean Square Error (RMSE) and is 

compared with the original PF-SVR method and another benchmark approach, the FGAPSO-SVR, from literature [19].  

The remainder of the paper is organized as follows. Section 2 introduces some reviewing background knowledge about PF-SVR 

and the PCC method. The proposed novel model is presented in Section 3. Section 4 illustrates the case studies. Section 5 provides 

some conclusions on the findings of the research. 

2. THEORETICAL BACKGROUND 

Reliability prediction based on measured CM data can amount to a time series prediction problem that estimates the future 

values based on the known current and past data. Moreover, considering the multi-state operating condition, the objective problem 

this paper try to address can be mathematically stated as following. 

Given that: 

1)  A collection of time series extracted from historical reliability trajectories under different states: 

11 1 1

1 1{ ,..., ,..., ,..., ,..., ,..., ..., }j c
L LL i

j j j c cΑ ts ts ts ts ts ts ts                                                                    (1) 

where i

jts  represents a time series that j represents its true state, jL represents the total number of time series under this state, and c 

counts the total number of states. 

2) A discrete time series Y of variable y composed of past measurements until current time step: 

1 1( , ,..., )k ky y yY                                                                                           (2) 

where k corresponds to the counter of current time step. 
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 Pursue: 

The value of time series in next time step: 

1 1 1
ˆ ( ) ( , ,..., )k k k k k k k py f f y y y    s                                                                     (3)  

where the input vector
ks  represents the p-lagged previous valves of Y and ( )kf   represent the prediction model at current time step. 

Solution:  

The problem described above can be divided into three sub-problems performed at, respectively, the off-line stage and online 

stage. 

Off-line stage: 

1) Build the classification model by denoting the collection of probable system states as ={1,..., }cΓ , where c corresponds to the 

total number of states: 

:   Α Γ                                                                                                   (4) 

which partitions A into some dissimilar classes, such that time series belonging to the same class are characterized as working 

under the same state.  

Online stage: 

2) Estimate the current system state according to the classification model  and the latest measurements
ks : 

( )k k U s                                                                                              (6) 

where { ,  }i

k ku i U Γ  represents the memberships (probabilities) of current system belonging to each state. 

3) Update the prediction model for prediction task of Eqs. (3), based on state estimation and priori trained optimal prediction 

models of each state: 

  1( ) ( )k k kf f    U                                                                               (7) 

In this paper, the sub-problems (1) are solved by the PCC method and the sub-problems (2) and (3) are addressed within our 

proposed approach based on an SVR framework. Due to the limits of paper length, only a brief overview about the basic theoretic 

background of SVR and PCC method are presented in the following and more detailed description about the proposed approach is 

given in Section 3. 

2.1. Overviews about the SVR method and its parameters tuning through PF 

For a concerned time series data set 1{( , )}n

i i iD y  s , the regression function (3) can be framed as following: 

( ) ( )Tf b  s w s                                                                                           (8) 

where w represents the weight vector and b represents the intercept, respectively, of the regression model, and : pR F

represents a nonlinear function which maps the low-dimensional input vectors to the feature space F. Thus, the pervasive form (8) 

is valid not only for the linear case but also the nonlinear case. 

 Then, the  -insensitive loss function l is introduced to evaluate the error of regression: 

 =
0, | ( ) |

| ( ) |
| ( ) | ,

y f
l y f

y f therwise






  
 

   





s
s

s
                                                               (9) 

 By minimizing both the regression error, which is denoted as slack variables *,i i  , and the Euclidean norm of the weight vector 

w, i.e., w , which depict the complexity of the regression model and therefore is closely related to the generalization ability, a 
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compromised quadric optimization problem to identify the regression model arises as follows: 

2* *

1

*

*

1
minimize ( , , ) ( )

2

( )

. . ( )

, 0

T

T

n

i i i i

i

i i

i i

i i

J C

y b

s t b y i n

   

 

 

 



  

    


        




w w

w s

w s

                                                            (10) 

where C is the penalty coefficient denotes the trade-off between empirical and generalization errors. Through the Lagrangian Dual 

method, the solution of this quadratic optimization problem can be obtained through the KKT condition and the output value is: 

*

1

( ) ( ) ( ) ( , )
n

i i i

i

f b K b 


      s w s s s   

( , ) ( ) ( )T

i j i jK   s s s s                                                                                 (11) 

where ( , )i jK s s is a kernel function satisfying the Mercer condition. More detailed derivation about the Dual Theorem and the 

KKT condition can refer to [20]. 

Generally, for better learning and prediction performance, the SVR parameters that need to be properly tuned include the kernel 

width  which control the mapping function (refers Radial Basis Function without specific instructions) from the low dimensional 

non-linear data into the high dimensional feature spaces, the regularization coefficient C specifying the trade-off cost between 

minimizing the empirical risk and the model complexity and the tube size ε of the ε-insensitive loss function. Stacked into a vector 

as  ,  ,  C x , the optimal hyper-parameters vector optimalx  is treated as the true state of a hypothetical system and the real 

reliability values are treated as the measurements of this system , thus the PF method can be adopted to estimate the true state, 

namely the optimal SVR hyper-parameters. 

The state transition equation and measurement equation of this hypothetical system can be written as: 

  

1 ( )

( , )

k k k k

k k k k k

h

y g

  

 

x x u

x s v
                                                                                 (12) 

 

where m

k Rx  is the system state (optimal hyper-parameters) at time k, 
k

h is the state transition equation， p

k Rs  is the input 

vector at time k, kg is the measurement function and 
ky  is the measurement at time k. The vectors ku ,

 kv represent nonlinear 

noises with zero means and variances Q, R, respectively. In this PF-SVR model, the state transition equation 
k

h  actually represents 

the particles drift operation, which manipulates the old particles to generate a set of new particles through the application of a given 

rule. The measurement equation 
kg  represents the expanded regression model built by SVR with the parameters of the optimal 

particle at time k. The input vector 
ks  represents the training samples, in any case consisting of the historical reliability values. 

On the basis of Eq. (12), the main procedures of SVR tuned by PF shows as follow: 

（1）Initialization. Set the initial SVR parameter vector 
0x  and the number of particles 

sN  (e.g. in the range [300, 500]). The 

particles values and their weights are initialized as 0 0 0 1
= , 1

sN
i i

s i
N


x x  . 

For 1,2...k  : 

（2）Perform PF process: 
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a) By utilizing the particles set 1 1
ˆ{ 1 } sNi

k s iN x ,  at the previous time k-1 , predict the current state (at time step k) through the 

state transition equation: 

| 1 1 1 1
ˆ ˆ( ) ,  i i i i i

k k k k k kh       x x u                                                                   (13) 

b) Predict the SVR regression outputs 
| 1 1

ˆ{ } sNi

k k iy  
 through the measurement equation: 

| 1 1 | 1 1
ˆˆ ( , )i i

k k k k k k ky g    x s v                                                                        (14) 

This is actually performed by training the SVR with the parameter vector | 1
ˆ i

k k x and historical reliability values
1ks .

.
 

c) As the new measurement 
ky arrives, update each particle weight by substituting the difference between the predictions 

| 1 1
ˆ{ } sNi

k k iy   and the measurement 
ky into a Gaussian likelihood equation: 

1 1
ˆ( | )i i i

k k k k k
p y   

 x                                                                            (15) 

2

| 1

1

ˆ( )1
ˆ( | ) exp{ }

22

i

k k ki

k k k

y y
p y

R






  x                                                            (16) 

d) Normalize the particles weights:  

1

sNi i j

k k kj
  


                                                                                   (17) 

e) Perform resampling to eliminate the low-weighted particles and reproduce high-weighted particles [21], generating a new 

random particles set ˆ( 1 )i

k sNx , . 

（3）Output the parameter estimation at time k 

1
ˆ ˆ /

sN i

k k si
N


x x                                                                                    (18) 

（4）Train the SVR model with the updated parameter vector ˆ
kx , to get the prediction

1
ˆ

ky 
of the future time step k+1. 

In practical applications, one issue to be considered is how to obtain the initial SVR parameters. According to whether the 

historical data is sufficient or not, two kinds of approaches can be considered here: the exhaustive searching approaches such as the 

Grid-Searching method with historical data and the expert based approaches such as the AS method [22], when there is no 

sufficient historical data.      

2.2. Overview about the PCC method 

PCC is an approach derived from Bezdek’s Fuzzy C-Means (FCM) algorithm [23]. It reformulates the fuzzy clustering partition 

[24, 25], which limits that one pattern can only belong to one class, and avoids the trivial solution that all memberships are equal to 

zero [26]. Instead, an elastic possibilistic partition is proposed, so that it can be used to generate memberships that have a typicality 

interpretation as a confidence measure. 

Let U denote a partition matrix generated by the PCC algorithm. The elements iju of U are subject to the following conditions 

[27]: 

 

1

[0,1],  for all  and ,

0  for all , and

max 0 for all .

ij

N

ij

j

ij

u i j

u N i

u j





 



                                                                  (19) 

Here, iju are the membership values of pattern 
jx  to cluster i; N is the size of the data set. Then, the purpose of possibilistic 

clustering is to assign high membership values to patterns which are good representatives of the clusters and low membership 

values to non-representative patterns. The objective function which meets this purpose can be formulated as follows [28]:  

1 1 1 1

( , ) ( ) (1 )m m

C N C N
r r

m ij ij i ij

i j i j

J s  
   

    U v                                                              (20) 
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where ijs is the distance of pattern jx from the prototype 
iv  (the center of i-th cluster), 

i are suitable positive numbers and 
mr  

determines the fuzziness of the final possibilistic partition and the shape of the possibility distribution (if
mr → 1, the membership 

functions are crisp, if
mr  , they are maximally possibilistic). Here, the first term demands that the distances ijs

 
be as low as 

possible, whereas the second term requires that iju  be as large as possible, thus avoiding the trivial solution. The selection of 
i  

will be discussed later. 

The minimization of the objective function in Eqs. (20) leads to optimal possibilistic membership functions of the form:  

*

1

1

1

1 ( ) m

ij

ij r

i

s










                                                                                  (21) 

It is obvious that the iju obtained from Eqs. (21) lies in the range that Eqs. (19) imposes as constraint.  

The value of i  determines at which distance the membership of a pattern to the cluster i can be assigned a value of 0.5 (like “the 

3 dB point” in confidence analysis) and, thus, it influences the shape of the cluster. In this sense, it needs to be chosen according to 

the desired “bandwidth” of the possibility (membership) distribution for each cluster. On the other hand, i determines the relative 

importance of the second term compared with the first term. In practice, i
 
is taken in proportion to the average fuzzy distance of 

all patterns to cluster i [28]:  

1

1

                  1,2,...,

m

m

N
r

ij ij

j

i N
r

ij

j

s

K i c











 




                                               (22)  

where K is typically chosen unitary and the membership iju is usually obtained by the standard Fuzzy C-Means (FCM) algorithm 

[25, 27, 29].  

The updating of the prototypes relies on the chosen distance measure, since different distance measures lead to different 

algorithms. For the most common case, the distance is described by an inner product induced norm metric, as in the FCM algorithm, 

i.e. 

2 ( ) ( )T

ij j i i j is   x v M x v                                                                           (23) 

The prototype is, then, updated as: 

*

1*

*

1

( )

         1,2,...,

( )

m

m

N
r

ij j

j

i N
r

ij

j

i c











 





x

v                                                    (24)  

From Eqs. (21), (22), (24), the procedures for the standard possibilistic clustering algorithm are:  

1. Set the number of clusters c;  

2. Set the fuzziness index
mr ;  

3. Perform an initial partition of the patterns into c fuzzy clusters, e.g. by using the standard Fuzzy C-Means (FCM) 

algorithm [25].  
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4. Approximate
i  using Eqs. (22).  

5. With the given
* *{ }ijuU , compute the optimal prototypes

*

iv , i = 1, 2, …, c from Eqs. (19);  

6. With the optimal
* *{ }iv v , compute the optimal membership values

*

iju ,  i=1, 2, …, c, j=1, 2, …, N  from Eqs. (21).  

7. Repeat steps 5 and 6, until no change of ( , )mJ U v  is detected from one iteration t to the next or until the maximum change 

of the membership functions from one iteration t to the next is below a predefined threshold ε, i.e.  

* 1 *max | ( ) ( ) |t t

ij ij                                                                         (25)  

3. THE NOVEL MULTI-STATE DYNAMIC SVR METHOD 

In this section, a detailed description about our proposed Multi-state Dynamic SVR is provided. Like all the dynamic prediction 

methods, this proposed method is implemented in two stages: I) the off-line stage training the prior knowledge, i.e., the historical 

time series of reliability evolution trajectories, to construct the state classification model, II) and the online stage dynamically 

predicting the system reliability based on the posterior measurement.  Firstly, a flowchart of the proposed approach is given as Fig. 

2 for clarity and more specific details are demonstrated in the following. 

 

Fig.2 Flowchart of the proposed Multi-state Dynamic SVR method 
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3.1. Off-line training stage: 

As stated in previous sections, in this work, the historical reliability trajectories and their true state are assumed known. Then the 

prior information remained to be trained in the off-line stage can be noted as Eqs. (1) and the objective in this stage is to build a 

classification model :  . Α Γ                                                                                                

For this, it is requested to first select features F from Α , and then learn the relationship between the extracted features F and their 

labeled state, thus the construction of classification model can be rewritten as:  

:   F Γ                                                                                                  (26) 

which actually represents a supervised learning process. 

Step 1: Feature selection 

It is necessary, prior to any training, to select proper features that competently describe the difference between samples with 

different label. In this paper, the selected feature to characterize time series trends resorts to hyper-parameters, noted as

 ,  ,  C x , of SVR model that optimally fit the concerned time series. The feasibility of this “optimal hyper-parameters” 

feature derives from a notable fact that since the hyper-parameters are critically important to the prediction performance of SVR 

model, the hyper-parameters of SVR model optimally fitting time series with different trend will distribute in different area within 

the parameters space. In another words, the distribution of the optimal hyper-parameters can actually stands for a statistical 

description identifying the relationship between time series and their state. Within the PF-SVR paradigm, this “optimal 

hyper-parameters” feature can achieve satisfactory performance, including the capability of characterizing and availability of 

implementation.  

For the time series
i

j ts A , their features 
i

jx  are firstly collected. Since the computational cost is not that important in the 

off-line stage, the precise but computation consuming high-dense mesh-refinement Grid Search method through the 

Cross-Validation scheme are considered. Then, a collection of optimal hyper-parameters 

11 1 1

1 1{ ,..., ,... ,... ,... ,..., ,... }j c
L LL i

j j j c cF x x x x x x x  can be extracted from Α  and is regarded as the labeled features. 

For ease of clarity, Fig. 3 shows an example of collecting the optimal hyper-parameters from time series with two states of 

conditions. 

Step 2: Classification model construction. 

With the selected features F, this step aims to construct the classification model. 
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Through the PCC method, the classification model :   F Γ is realized by assigning each feature x a membership 

1{ ,..., }cu uU where 
iu represents the probability it belongs to class i. Denoting the calculation of the membership as: 

 ( ,  ) U x Β                                                                                                    

1 1 1 1 { ,..., } {( , , ),..., ( , , )}c c c c  Β B B v M v M                                                                (27) 

where ( , , )i i i iΒ v M is the statistical description used by PCC about class i that 
iv  represents the prototype (class center) of each 

class,
iM represent the distance measure covariance, and i represents a tuned positive number controlling the degree of 

concentration. Then, for a given test feature x, its membership U can be calculated through ( )  , which corresponds to the 

procedures of Eqs (21), (22), (23).  

As Fig. 4 shows, the class description 
1 1 1 {( , , ),..., ( , , )}c c c Β v M v M  can be intuitively represented as ellipses in the features 

space, where the ellipse centers represent the prototype 
iv  of each state and the dots on the ellipse edge are assigned a membership 

value of 0.5 to the corresponding prototype which actually represent the distance measurement matrix
i

M and constant 
i of each 

state. The details of how to acquire v, M and  on the basis of F can refer to Section 2.2.   

 

Fig. 4 An illustration of PCC classification model  

3.2. Online reliability prediction stage:  

As stated in Section 2, prediction problem considered in this paper can be defined as: 

Fig. 3 An example of extracting the “optimal hyper-parameters” features for time series with two potential states 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 12 

1 1 1
ˆ ( ) ( , ,..., )k k k k k k k py f f y y y    s                                                                     (28) 

where the output ˆ
ky  is the prediction of time series value at time step k , the input vector 

ks  is composed of the p-lagged reliability 

values in p previous time steps and ( )kf   represents the prediction model in time step k.  

In the online stage, it is assumed that at each new time step the measurement of the last time step becomes available and the 

underlying evolution trend of system reliability is changed which means the prediction model shall be adjusted correspondingly. 

Thus, the objective in this stage is to, first, update the system state estimation on the basis of new measurement and, second, update 

the prediction model according to the state estimation. 

As time step k+1 arrives, with the newly available measurement value
ky , the state estimation U  at time step k can be calculated. 

Denote the membership calculation process as: 

( )k kyU Β                                                                                              (29) 

Then the prediction model is also recursively updated according to the updated membership and optimal prediction models of 

each state: 

 1( ) ( )k k kf f    U                                                                                      (30) 

Therefore, the aforementioned objectives in this stage can be mathematically stated as equivalent to the construction of and 

.  

In this paper, the prediction model is constructed within the SVR paradigm, thus it can be actually described by its 

hyper-parameters for given training samples (for more details refer to Section 2.1). Denote the prediction model built by SVR with 

the hyper-parameters x and the training dataset Y as ( )f 
x,Y

, then the prediction model can be rewritten as: 

 
11 , 

, 

( ) ( )

( ) ( )

k

k

k

k

f f

f f

  

 

x Y

x Y

                                                                                         (31) 

Hence, the problem of updating the prediction models stated as Eqs (30) turns to a problem of updating the hyper-parameters: 

 '

1k k k x x U                                                                                          (32) 

Besides, the optimal SVR hyper-parameters 
optimalx  is also regarded as the state feature in this paper, so the problem of 

calculating the memberships stated as Eqs (29) also turns to a problem of calculating the hyper-parameters: 

 ' ,

( , )

k

optimal k k

k

k optimal

y

 

x x

U x B
                                                                                 (33) 

Therefore, a link between the measured reliability data and the state estimation is built through the SVR hyper-parameters, as Fig. 

5 illustrates. Then, the constructions of  
'
and 

'
are presented in the following parts. 

Step 3: System state estimation: construction of 
'.  

In this paper, the prediction model is constructed within the PF-SVR paradigm, thus the hyper-parameters can be represented by 

a set of particles (for more details refer to Section 2.1). Denoting the particle set at time step k as: 

    1 1: ,..., , : ,...,N N

k k k k k k kParticles w wX x x W                                                             (34) 
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Then the predictions of 
ky before it becomes available by each particle can be represented as: 

1 2 _ 1 1,
ˆ ( , ,..., ),  ={ ,..., }i

k

i

k k k k p k window size ky f y y y y y     
x Y

Y                                            (35) 

It is notable that only a properly selected length, denoted as window_size, of previous data is utilized as the training data to 

generate the prediction model. Otherwise, a too short training window is not sufficient to depict the characteristics of current 

system state; and a too long training window will significantly increase the computational cost and, more importantly, the state 

estimation about the current system could be obscured because of the overlap effect of other previous states. 

Once the time step updates to time step k+1, the true measured data at time step k, 
ky , is available, so the weight vector can be 

updated as kk W W , by substituting the difference between the output predictions 
1

ˆ ˆ{ ,..., }k k

Ny y  and the true measurement
ky into 

Eqs. (15), (16), (17). Thus the optimal hyper-parameters for time step k is obtained as: 

optimal

k i i

k kwx x                                                                                      (36) 

By the Eqs (36), the construction of 
'
is fulfilled. Given this updated optimal SVR parameter

k

optimalx , the membership 

indicating the possibility that the current system belonging to each state can be represented as: 

1 2

1

1

1

{ , ,... }

1

1 ( )

( ) ( )

m

k k k

k c

k

i

ri

i

k T k

i optimal i i optimal i

u u u

u
s

s













  

U

x v M x v

                                                              (37) 

 

 

Step 4: Prediction model updating: construction of 
'.  

Once the system state estimation at time step k is characterized by the membership 
kU , the prediction model is requested to be 

updated according to 
kU . 

As we have stated, within the PF-SVR framework, the updating of prediction model means the updating of SVR 

hyper-parameters, which resorts to a sequential evolution process of a set of particles, thus: 

Fig. 5 An illustration of how the SVR hyper-parameters connect the measurements and prediction model 
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 ' '

1 1 ( )k k k k k kParticles Particles   x x U U                                          (38) 

In order to use the state estimation result 
kU to improve the evolution process of particles, a novel Replacement Operation is 

proposed and is performed with the following procedures: 

A) Generating the replacement particles. At a general time step k, a collection of replacement particles, noted as 
_1 _{ ,..., }k k k c

replace replace replaceX x x  where 
_k i

replacex denotes the particles generated from state i, is obtained based on the membership 
kU and 

classification model { ,  ,  }V M Eta . The total size of k

replaceX is set as:  

_replaceN N replace rate                                                                            (39) 

where N is the particles number and replace_rate is a preset coefficient controlling the total amount of replacement particles, and 

the size of
_k i

replacex , i.e., number of particles generated from state i, which is proportional to the corresponding membership value
iu , 

is quantified as：  

_ ,     1, 2,...,k i i

replace replace kN N u i c                                                                   (40) 

Then, _k i

replacex is generated by: 

                                               
_ _{ ,  ,  },    1, 2,...,k i k i

replace i i replaceGaussian N i c x v M                                                       (41) 

where  { ,  ,  }Gaussian Nv M  is a Gaussian generating function that draws N Gaussian distributed samples with center on v and 

covariance of M.   

B)  Replacing old particles. In the resampling step, only ( replaceN N ) particles are resampled from the old particles. Denoting 

the collection of resampled particles as
k

resampleX , the updated collection of particles are then composed of the ( replaceN N ) 

resampled particles and replaceN  replacement particles: 

1 ,  k k

k replace resample
   X X X                                                                                  (42) 
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This Replacement Operation plays an important role in improving the particles evolution process. As illustrated in Fig. 6, in the 

case that the current system is characterized with a high membership value to a particular state, which is intuitively reflected by that 

the current 
k

optimalx is “close” to a specific cluster center (see Fig. 6a), then large number of replacement particles will be generated 

from this cluster and replace the old particles, so that the particles will converge quickly to this cluster center and gain the resistance 

to other local optima. So, in this case, the evolution process of particles is significantly improved by the replacement particles, 

namely, the state estimation knowledge. On the contrary, the origin PF-SVR takes no advantage of the state estimation knowledge, 

thus the evolution of particles mainly relies on the random drift, which tends to show a comparatively slower convergence and the 

a) 

b) 

Fig. 6 Particles evolution with/without Replacement Operation in two situations: a) with clear state estimation, b) 

with ambiguous state estimation. 
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vulnerability to local optima. On the other hand, in another case that the current system is characterized with membership all low or 

nearly homogeneous to each state (see Fig. 6b), which means there is no clear state assignment can be provided, then few 

replacement particles are generated, thus the proposed method degrades to the original PF-SVR method. In this case, the proposed 

method inherits the searching ability of the original PF-SVR. 

 At last, it is worth noting that since the Modified PF-SVR introduces additional particles with satisfactory quality and variability 

into the particles set, to an extent it can be also regarded as a considerable remedy for an inherent drawback of origin PF method: 

the Sample Impoverishment. The improvement of the proposed method on another drawback of PF method, the Divergence, will 

be demonstrated later through some experiments.  

3.3. Illustrative Pseudo-code and flowchart  

For better completeness, the pseudo-code of the proposed method is given in the following. 

 

Pseudo-code：The implementation of the Multi-state Dynamic SVR 

Off-line training: 

Step 1, Obtain the {V,  M, Eta} by PCC method. 

Step 2, Initialize the particles of SVR hyper-parameters:{X, W}; 

Online iteration: 

Time Step=k: Denotes the particles of SVR hyper-parameters as { , }k kX W ; 

Time Step=k+1: Measurement at Time Step k, 
ky ,is available; 

Step 3, Randomly drift the particles kk X X ; 

Step 4, Update the weights of new particle set via: 

   Step 4.1, Build SVR regression models with every particle from kX , based on a data fragment with length of 

“window_width”; 

   Step 4.2, Obtain the predictions of every particle at time k：
| 1 1

ˆ{ } sNi

k k iy  
 ; 

   Step 4.3, Update 
k kW W  by eqs (15), (16), (17); 

Step 5, Obtain the updated optimal parameters vector 1k

optimal


x as the weighted sum of kX  with weights 

kW ; 

Step 6, Predict 
1

ˆ
ky 

with 
1k

optimal


x ; 

Step 7, Calculate the memberships 
1 2{ , ,..., }cu u uU  of 

1k

optimal


x  to each state; 

Step 8, Perform the resampling and replacement operation, to obtain the new particles set 
1 1{ , }k k X W ; 

Step 9, Back to Step 3. 

Here, the parameter window_width determines the size of back forwards data used as training data to build the prediction model.  

4. CASE STUDIES 

In this section, the potentiality and strengths of the proposed approach is demonstrated by experiments carried on some 

illustrative case studies. All the experiments in this paper adopt the single-step-ahead time series prediction, which regards each 

sample ks  as the output of an underlying mapping function and the sample in the previous time step 
1ks 
. Then, the relationship 

between the prediction at the next time step and the input at the current time step is described by the following equation:  

1
ˆ ( )k k ky f y                                                                                            (43) 

4.1. Case study I: Lithium-ion battery test datasets under dynamical multi-state operating profiles 

In this section, the time series consisting of Lithium-ion battery monitoring data are firstly concerned. Due to the advantages of 

high energy density, long cycle life, low self-discharge rate, low weight and no memory effect, etc. [30], Lithium-ion (Li-ion) 

batteries have become the hot-topic rechargeable power supply for various kind of electronic devices. Especially, the Li-ion battery 

is getting most focused in recent years as the hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) are 

drawing more and more attentions from consumers and manufacturers since the growing awareness of environment friendliness, 
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demand of exploiting alternative energy and interest in “intelligent drive” [31]. Like all the other electronic components, the Li-ion 

batteries degrade when utilized for various reasons. Thus, it is important to reasonably manage the health of batteries [32]. 

 Two typical datasets witth Li-ion battery operated under multi-state conditions are considered in this case study: 

1) Dataset 1: the inner temperature of Li-ion batteries in different charge-discharge profile. Keeping monitoring on the battery 

inner temperature is very important for battery health management because of two reasons. First, the inner temperature will 

significantly impact the degradation process of battery performance. Then, a comparatively high inner temperature will pose extra 

risk of some heavy accident such as explosion. Thus, for a battery management system (BMS) aiming at increasing battery life and 

predicting battery failure, the thermal management is indispensable, especially for high-temperature batteries [33]. So, Dataset 1 

firstly considers the online prediction problem of Li-ion batteries inner temperature in different charge-discharge profiles. 

2) Dataset 2: the SOH data of Li-ion batteries under different state of charge range. Dataset 2 considers another crucial CM 

signal, the SOH of battery, which is directly related to battery performance and usually used to predict the battery RUL. The SOH 

of battery represents the ratio of the maximum stored energy a battery can provide during a full-charge-full-discharge process in a 

specific moment compared with the nominal capacity [34]. For batteries operated in charge-discharge cycles, the cycling operation 

reduces its SOH through a variety of concurrent failure mechanisms [35-37]. If the SOH is lower than the preset threshold, the 

battery is identified as failed to continue providing reliable performance in the designated applications. Thus, the capacity of a 

battery can be regarded as a direct indicator to evaluate its reliability. In recent years, the prediction of battery SOH has become an 

important standalone research field on prognostics and health management of battery. The degradation of battery SOH is highly 

dependent on the charging-discharging conditions such as the range of State of Charge (SOC), where the SOC usually quantifies 

the ratio between the current available capacity and the rated capacity. In most practical applications, batteries undergo 

charge-discharge cycle for only partial State of Charge (SOC) ranges, but not full SOC (0%-100%), and in different SOC ranges 

the batteries will show different degradation behavior. Saxena, et.al., have thoroughly studied this phenomenon, and obtained 

sufficient experiment results demonstrating the effects of different SOC ranges on battery capacity degradation [38]. In this dataset, 

these experimental results are introduced as the training dataset to build the classification model, and capacity values of a battery 

working under a multi-state condition consisting of different SOC ranges is considered as the test dataset  

4.1.1. Description of data 

1) Dataset 1. 

Dataset 1 comes from a set of tests on Li-ion batteries from the NASA PCoE (Prognostics Center of Excellence) database [18]. 

For each test, the battery is run undergoing a charge-discharge cycle through 3 different operational profiles: 1) constant current 

(CC) charge at current of 1.5A until the battery voltage reaches 4.2V, 2) constant voltage (CV) charge at battery voltage of 4.2V 

until the charge current drops to 20mA, and 3) discharge carried out using a 0.05Hz square wave loading profile of 4A amplitude 

and 50% duty cycle until the battery voltage falls to 2.7V. The transition between each operational mode is instantaneous. 

We take 36 independent charge-discharge cycles into consideration, with 35 cycles regarded as the training cycles on which the 

training of optimal particles (SVR hyper-parameters) for each operational mode is based, and the remaining one as the test cycle on 

which the Multi-state Dynamic SVR is performed. The total time steps and the number of optimal particles for each operational 

mode in each cycle are different, as listed in Table 2.  

Table 2: Length of each operational state for Dataset 1 

Cycles 

Length of each states 

CC Charge CV Charge Discharge 

1 119 147 65 

2 109 138 59 

3 115 151 71 

4 104 129 68 

5 111 144 63 
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2) Dataset 2. 

Dataset 2 comes from the experiments results of literature [38]. In this study, the commercial graphite/LiCoO2 pouch cells with 

a nominal capacity of 1.5 Ah and a nominal voltage of 3.7 V were used. The end-of-charge voltage is specified as 4.2 V and the 

end-of-discharge voltage is specified as 2.75V. The charging-discharging cycling operation is performed through an Arbin BT2000 

Battery Tester with 16 independent channels.  

To understand the battery degradation behavior in different SOC ranges and build the classification model, the selected batteries 

were tested under different SOC ranges with different mean SOC and ΔSOC values, which are listed as Table 3. The experimental 

SOH values of batteries under charging-discharging cycles with these states of SOC ranges are presented in Fig. 7, which are used 

as the training dataset.  

Table 3:  States of SOC ranges for Dataset 2 

States SOC range Mean SOC ΔSOC 

1 0%-100% 50% 100% 

2 20%-80% 50% 60% 

3 0%-60% 30% 60% 

4 40%-100% 70% 60% 

 

The test dataset considers SOH values of a battery operated under a multi-state condition which is specified by resorting to 

randomly transferred states of SOC range and the real state of SOC range is unknown to users.  

4.1.2. Application of proposed method 

In accordance with the implementation procedures presented in Section 3, the application of the proposed method is described 

here step by step. 

Step 1: For every training time series, the high-dense mesh-refinement Grid-Search method is applied within the 5-fold Cross 

Validation scheme to obtain the optimal SVR hyper-parameters, which are demonstrated in Fig. 8 and Fig. 9 by the dots and serves 

as the features of related states. We can see clearly that the features, namely the optimal SVR hyper-parameters, related to time 

series under different state distribute in significantly different area of the parameters space, which provides fairly supports to the 

availability of this optimal hyper-parameter features  

Fig. 7 Training trajectories of Dataset 2 
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Step 2: For the training cycles, the true operational profile is known. For both Dataset 1 and Dataset 2, we assign the particles a 

high membership values to the true operational profile (linearly vary from 0.5 to 0.95 as time steps increases, guaranteeing that the 

more sufficient trained particles have the higher membership values), and, on the contrary, a low membership values to the other 

wrong profiles (set to 0.05). Then, the possibilistic clustering classification can be performed with the clusters number C  set equal 

to 4 and the fuzzy parameter 
mr  set equal to 3. The classification results, together with the optimal particles, are also shown in 

Figure 6 and Figure 7. As depicted in Section 3, the edges of ellipses represent the classification model{ ,  ,  }V M Eta . 

Step 3: Given the classification model obtained in Step 2, the proposed method is tested within the task of online prediction of 

dataset D. First, the current system state is estimated by substituting the current feature (the latest optimal SVR hyper-parameter) 

and the classification model into Eqs. (21), (22), (23). The probability of the system belongs to each state at every time steps for 

dataset 1 are calculated and shown in Fig. 10. 

Step 4: With replace_rate set equal to 0.3 and N set equal to 100 from trial, the Modified PF-SVR proposed in this paper plays 

important roles in updating the prediction model. The updated prediction model makes use of both the information of system state 

estimation and the searching ability of PF-SVR, thus it is expected to achieve satisfactory prediction performance, which remains 

to be verified by the experiment results. 

4.1.3. Analysis of Experiment results 

1) For Dataset 1: 

Fig. 9 Optimal SVR parameters and possibilistic clustering classification results for Dataset 2 

Fig. 8 Optimal SVR parameters and possibilistic clustering classification results for Dataset 1. 
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 Without loss of generality, Fig. 11a shows one trajectory of the prediction results with respect to PF-SVR, Multi-state Dynamic 

SVR and FGAPSO-SVR for the global test cycle. For further comparison of the performances after a state transition, the partial 

results of the time steps after 357 (transition from CV Charge state to Discharge state happens) is given as Fig.11b. In Fig. 11a, we 

can see clearly that the battery follows different thermal behaviors in different operational profiles. Fig.11b illustrates that the 

Multi-state Dynamic SVR method is more suitable for predicting this multi-state behavior, with more stable convergence to a 

normal state and quicker adaptation to changed state than the other two methods. Moreover, it is shown clearly that after the state 

transition at time step 357, both the PF-SVR and the FGAPSO-SVR experience a long “bad” period for more than 20 time steps, 

while the Multi-state Dynamic SVR adjusts to the “good” prediction after only 4 or 5 steps of “bad” predictions. Fig.13 gives the 

state estimation results and the RMSEs of predictions for 10 independent experiments are listed in Table 4 and Table 5, which hold 

the same conclusions as discussed in last case study.  

Table 4:  RMSEs for 10 runs in the real case for PF-SVR, Multi-state Dynamic SVR and FGAPSO-SVR (at normal states: 

Time Steps 21-357, 359-400) 

Run Index PF-SVR Multi-state Dynamic SVR FGAPSO-SVR 

1 0.1195 0.1037 0.1064 

2 0.1206 0.0928 0.1382 

3 0.1342 0.0982 0.1304 

4 0.1106 0.0977 0.1176 

5 0.1582 0.1036 0.0984 

6 0.1097 0.1120 0.1528 

7 0.0861 0.0818 0.1321 

8 0.0921 0.0919 0.1453 

9 0.1409 0.1021 0.1189 

10 0.1327 0.0997 0.1238 

Fig.10 State estimation result for Dataset 1: possibility that the current system belongs to each state 
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Mean 0.1205 0.0984 0.1264 

Standard Deviation 0.0221 0.0082 0.0169 

 

 

 

Table 5:  RMSEs for 10 runs in the real case for PF-SVR, Multi-state Dynamic SVR and FGAPSO-SVR (at state transition: 

Time Steps 358-378) 

Fig. 11 Prediction results for Dataset 1: (a) global results, (b) partial results 
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Run Index PF-SVR Multi-state Dynamic SVR FGAPSO-SVR 

1 0.7149 0.1187 0.8021 

2 0.8326 0.1320 0.9362 

3 0.6938 0.0975 1.0134 

4 0.7267 0.3124 0.8927 

5 0.9518 0.1984 0.8825 

6 1.0133 0.0871 0.7914 

7 0.8620 0.2346 0.9217 

8 0.9763 0.2289 0.8932 

9 0.8982 0.1798 0.9275 

10 1.0971 0.1545 1.1326 

Mean 0.8767 0.1744 0.9193 

Standard Deviation 0.1364 0.0708 0.0986 

2) For Dataset 2: 

Fig. 12 shows one trajectory of the predicted SOH by the proposed method, PF-SVR method and FGAPSO method, respectively, 

for the dataset 2. We can see that, though the predictions provided by these approaches are generally comparable in most time steps, 

the proposed method achieve obvious better performance after every state transition. 

To further evaluate the performance of the proposed approach compared with the benchmark approaches, experiments are 

independently repeated for 10 times and the RMSEs of prediction results of the 10 tests are plotted in Fig. 13.  

Fig. 12 The real and predicted battery SOH for one illustrative battery degradation trajectory. 
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Fig. 13 Comparison of the RMSEs for three approaches in 10 test trajectories for dataset 2 

4.2. More reliability data concerning mechanical structures 

 More reliability data are considered in this section to illustrate the proposed method further. All the introduced reliability data 

are taken from the NASA PCoE dataset, as described in Table 6. For more details about these data, readers can refer to the website 

of NASA PCoE dataset [18]. Experiment results for this data are reported in Table 7, 8 (only the Means and the Standard 

Deviations of 10 RMSES are listed, at the normal time steps and the state transition time steps, respectively).  

Table 6:  More reliability data from NASA PCoE dataset 

Name 

Chosen 

numbers of 

states 

CM indicators Descriptions 

Milling Data 4 
Wear of the 

milling insert 
Experiments on a milling machine for different speeds, feeds, and depth of cut. 

Turbofan Engine 

Degradation Simulation 

Data 

6 Wear degree 
Engine degradation simulations on C-MAPSS for different combinations of operational 

conditions and fault modes.  

 

Table 7:  Means of 10 RMSEs for more reliability datasets 

Datasets 

Normal State State Transition 

PF-SVR 
Multi-state Dynamic 

SVR 
FGAPSO-SVR PF-SVR 

Multi-state Dynamic 

SVR 
FGAPSO-SVR 

Milling Data 0.5764 0.5628 0. 5521 2.3317 1.0349 1.5476 

Turbofan Engine 

Degradation 

Simulation Data 

0.1324 0.1241 0.1195 0.6097 0.3029 0.5781 

 

Table 8:  Standard Deviations of 10 RMSEs for more reliability datasets 
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Datasets 

Normal State State Transition 

PF-SVR 
Multi-state Dynamic 

SVR 
FGAPSO-SVR PF-SVR 

Multi-state Dynamic 

SVR 
FGAPSO-SVR 

Milling Data 0.0874 0.0574 0.1033 0.2173 0.0988 0.3284 

Turbofan Engine 

Degradation 

Simulation Data 

0.0288 0.0093 0.0217 0.1986 0.0974 0.1875 

 

From both the real case experiments,  it is shown that the advantages of the proposed Multi-state Dynamic SVR method lie in 

providing more stable predictions when system runs under a normal state (reflected by lower Standard Deviation values), and in 

quicker adaptation to new state when system experience a state transition (reflected by lower Mean values). 

4.3. Analysis of computational complexity 

In terms of the computational complexity of the proposed approach, it is worth noting that the PCC is an off-line procedure and 

the replacement operation brings little extra computational burden to the SVR modeling and predicting procedure. So the 

Multi-state Dynamic SVR method has an equivalent computational complexity with PF-SVR. The comparison of the total running 

time (with experiment platform of Microsoft Windows 7, Matlab 7.9.0, Intel 2.4 GHz) to predict the Li-ion Battery dataset  and the 

artificial test dataset D by the three methods for 50 runs is reported in Table 9.  

Table 9:  Computing time (seconds) for 50 experiments for PF-SVR, Multi-state Dynamic SVR and 

FGAPSO–SVR 

Dataset Lengths PF-SVR Multi-state Dynamic SVR FGAPSO-SVR 

Dataset 1 350 4983.2 5172.8 6419.3 

Dataset 2 420 5949.2 6217.9 7238.4 

 

From above experiments, we can conclude that the proposed Multi-state dynamic SVR method can effectively estimate the 

current system state and obtain superior predictions. Specifically, the significances of our method that is illustrated by the 

experiments results lie in: 1) it novelly predict the system reliabilities under the multi-state operating condition, 2) a concise but 

effective way to estimate the system state is provided, 3) the prediction results is more stable when system runs under a normal state, 

and more precise when system experience a state transition, 4) the computational cost of the proposed approach is considerable.  

5. CONCLUSION 

In this paper, a data-driven approach that relies on time series expanded regression is proposed for solving online reliability 

prediction tasks. Unlike a large number of existing methods which have thoroughly investigated the classic static prognostics 

problems, this paper looks at systems/components under varying operating conditions, where the effect of operating conditions on 

the evolution of reliability shall be taken into consideration. Especially, a typical multi-state varying operating condition is 

emphasized. Thus, the proposed approach is designed with the capabilities of both recognizing the operating state and dynamically 

updating the regression model.  

The proposed approach is implemented by a recursive sequential SVR framework with off-line stage and online stage. First, a 

novel “optimal hyper-parameters” feature is proposed to characterize the evolution trends of system reliability under different 

states. Then, the PCC method is chosen to classify the training features off-line and then recognize the test features online. Third, 

the recognition result of current feature, namely the state estimation of current system, is utilized to recursively update the 

regression/prediction model built by SVR through a novel Replacement Operation.  

Experiments based on an artificial dataset and real case tests on Li-ion battery and more data sets show the superior prediction 

performance of the proposed method compared with the basic PF-SVR method and the FGAPSO-SVR method. With our proposed 
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approach, the operating condition states are characterized and estimated by a concise and effective way. The state estimation result 

is then used for constructing a dynamic prediction model, which consequently leads to a better prediction model. The superiority of 

the obtained prediction model is illustrated by the prediction results that: more stable when system runs under a normal state, and 

more precise when system experience a state transition. Besides, the total computing time experiments show that the computational 

complexity of the proposed method is almost equivalent to PF-SVR, and lower than FGAPSO-SVR. 

Since the objective systems faced by reliability engineering community is getting more and more complex, more attentions shall 

be paid to prognostics under the varying operating condition in the future development. For this, two critical tasks remain to be 

settled are: 1) how to model the reliability evolution under the varying operating condition and, 2) how to predict the system fail 

with the modeled system reliability. Therefore, our ambitions in further researches are to, first, enhance the proposed multi-state 

modeling framework for better universal performance; second, investigate the failure threshold definition under the varying 

operating condition; and third, develop a possibilistic health management strategy under the varying operating condition.  
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