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Abstract. When a fleet of similar Systems, Structures and Components (SSCs) is available, the use of all the 

available information collected on the different SSCs is expected to be beneficial for the diagnosis purpose. 

Although different SSCs experience different behaviours in different environmental and operational 

conditions, they maybe informative for the other (even if different) SSCs. In the present work, the objective 

is to build a fault diagnostic tool aimed at capitalizing the available data (vibration, environmental and 

operational conditions) and knowledge of a heterogeneous fleet of P Nuclear Power Plants (NPPs) turbines. 

To this aim, a framework for incrementally learning different clusterings independently obtained for the 

individual turbines is here proposed. The basic idea is to reconciliate the most similar clusters across the 

different plants. The data of shut-down transients acquired from the past operation of the P NPPs turbines 

are summarized into a final, reconciliated consensus clustering of the turbines behaviors under different 

environmental and operational conditions. Eventually, one can distinguish, among the groups, those of 

anomalous behavior and relate them to specific root causes. The proposed framework is applied on the shut-

down transients of two different NPPs. Three alternative approaches for learning data are applied to the case 

study and their results are compared to those obtained by the proposed framework: results show that the 

proposed approach is superior to the other approaches with respect to the goodness of the final consensus 

clustering, computational demand, data requirements, and fault diagnosis effectiveness. 

Keywords: Fault Diagnosis, Unsupervised Ensemble Clustering, Incremental Learning, Cluster 

Reconciliation, Fleet of Nuclear Power Plants (NPPs) turbines shut-down. 
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Notation and list of acronyms  
    

𝑺𝑺𝑪𝒔 Systems, Structures and Components 𝜹𝒆𝒇
𝒎  The pointwise difference between 𝒀̿𝒆  and 𝒀̿

𝒇 transients of the 

𝒎-th consensus of FF1 NPP turbine 

𝑵𝑷𝑷𝒔 Nuclear Power Plants  𝒚𝒛𝒕
𝒆/𝒇

 
𝒕-th vibrational measurement of the 𝒛-th vibrational signal of 

matrix 𝒀̿𝒆/𝒀̿𝒇 

𝑨𝑵𝑵𝒔 Artificial Neural Networks 𝑪∗ 
Optimum number of clusters of the final consensus clustering 

and for the mean similarity values of each EE1 transient to 

FF1 consensus clusters 

𝑪𝑺𝑷𝑨 
Cluster-based Similarity Partitioning 

Algorithm 
𝑿̿𝑭𝑭𝟏 FF1Training dataset matrix of FF1 NPP turbine 

𝑹𝑼𝑳 Remaining Useful Life 𝑿̿∗
𝑭𝑭𝟏 Updated FF1 training dataset by ADASYN approach 

𝑭𝑲𝑵𝑵 Fuzzy 𝑲-Nearest Neighbours algorithm  𝒀̿𝑬𝑬𝟏 
Membership values of EE1 transients classification to FF1 

consensus clusters 

𝑨𝑫𝑨𝑺𝒀𝑵 ADAptive SYNthetic sampling approach 𝝁𝒆
𝒎 

Membership value of the allocating transient 𝒆 of EE1 to the 

𝒎-th consensus cluster of  

𝑻𝑶𝑷𝑺𝑰𝑺 
Technique for Order Preference by 

Similarity to an Ideal Solution 
𝑲 Number of the nearest neighbors transients 

𝑯 Number of base clusterings 𝑲𝒎𝒊𝒏 
Minimum number of 𝑲th nearest neighbors transients for the 

FKNN classifier 

𝒋 Index of base clustering 𝑲𝒎𝒂𝒙 
Maximum number of 𝑲th nearest neighbors transients for the 

FKNN classifier 

𝑴 
True number of clusters in the final 

consensus clustering 
𝑲𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆 

Possible number of 𝑲th nearest neighbors transients for the 

FKNN classifier, 𝑲𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆 ∈ [𝑲𝒎𝒊𝒏, 𝑲𝒎𝒂𝒙 

𝑪𝒐𝒑𝒕
𝒋

 
Optimum number of clusters of the 𝒋-th 

base clustering 
𝑲∗ 

Optimum number of 𝑲th nearest neighbors transients used in 

FKNN classifier 

𝑷 Number of the NPP turbines of the fleet CV Cross Validation analysis 

𝒑 
Index of the generic NPP turbine,  
𝒑 = 𝟏, … , 𝑷 

𝒂𝒊 
Average distance of the 𝒊-th datum from the other data 

belonging to the same cluster 

𝑵𝑷 
Number of shut-down transients of the 𝒑-th 

NPP turbine, 𝒑 = 𝟏, … , 𝑷 
𝒃𝒊 

Minimum average distance of the 𝒊-th datum from the data 

belonging to a different cluster 

𝒊 Index of a transient, 𝒊 = 𝟏, … , 𝑵𝒑  𝑺𝒊 Silhouette value of the 𝒊-th datum 

𝒁 Number of signals of each 𝒊-th transient 𝑪𝒎 𝒎-th cluster in the final consensus clustering 

𝒛 Index of the generic signal, 𝒛 = 𝟏, … , 𝒁  𝑺𝒎 Mean silhouette value for the 𝒎-th cluster 

𝑻 Time horizon of the generic signal 𝒛 𝒏𝒎 
Total number of data in the 𝒎-th cluster in the final consensus 

clustering 

𝑷𝒑
∗  

Optimum number of clusters in the final 

consensus clustering of the 𝒑-th NPP 

turbine 

𝑺𝑽𝑪𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆
 

Silhouette validity value at 𝑪𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆, 𝑪𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆 ∈
[𝑪𝒎𝒊𝒏, 𝑪𝒎𝒂𝒙]  

𝑪𝒎𝒊𝒏 
Minimum number of clusters in the final 

consensus clustering 𝑷∗ 
𝑨̿ Adjacency binary similarity matrix 

𝑪𝒎𝒂𝒙 
Maximum number of clusters in the final 

consensus clustering 𝑷∗ 
𝝁 Pairwise binary similarity value  

𝑪𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆 
Possible number of clusters in the final 

consensus clustering 𝑷∗, 𝑪𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆 ∈
[𝑪𝒎𝒊𝒏, 𝑪𝒎𝒂𝒙]  

𝑺̿ Co-association (Similarity) matrix 

𝑷𝒇𝒊𝒏𝒂𝒍
∗  

The final reconciliated consensus clustering 

of the 𝑷 NPPs turbines  
𝑺𝒊𝒋 

Pairwise similarity value between the 𝒊-th and 𝒋-th similarity 

values 

𝑫𝑩 Davies- Boludin validity index 𝒅𝒊 𝒊-th entry of the diagonal matrix 𝑫̿ 

𝑵𝑭𝑭𝟏/𝑬𝑬𝟏 
Number of shut-down transients of 

FF1/EE1 NPPs turbines 
𝑫̿ Diagonal matrix with diagonal entries 𝒅𝟏, 𝒅𝟐, … , 𝒅𝑵  

𝑵𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆𝒅 𝑭𝑭𝟏,𝑬𝑬𝟏 
Aggregated set of transients of FF1 and 

EE1 NPPs turbines  
𝑰̿ Identity matrix of size 𝑵𝐱𝑵 

𝑷𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆𝒅 𝑭𝑭𝟏,𝑬𝑬𝟏
∗  

Optimum number of clusters in the final 

consensus clustering of the aggregated set 

of transients of FF1 and EE1 NPPs turbines 
𝑳̿𝒓𝒔 Normalized Laplacian Matrix  

𝒎 
Index of the generic consensus cluster of 

FF1, 𝒎 = 𝟏, … , 𝑷𝑭𝑭𝟏
∗   

 𝝀  Eigenvalue of 𝑳̿𝒓𝒔 

𝒀̿𝒆/𝒇 
Vibrational measurements dataset of the 

𝒆/ 𝒇-th transient of EE1/FF1 
𝑺𝒆

𝒎 
Mean similarity value of transient e of EE1 to the whole 

transients of 𝒎-th consensus cluster of FF1 

𝒆/𝒇 
Index of the generic shut-down transient of 

EE1/FF1, 𝒆 = 𝟏, … , 𝑵𝑬𝑬𝟏, 𝒇 = 𝟏, … , 𝑵𝑭𝑭𝟏 
𝑼̿ Eigenvectors of 𝑳̿𝒓𝒔  

𝝁𝒆𝒇
𝒎  

The similarity between 𝒀̿𝒆
 and 𝒀̿

𝒇 transients 
of the 𝒎-th consensus cluster of FF1 NPP 

turbine 
candidateCu  The 𝑪𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆-th eigenvector of 𝑳̿𝒓𝒔 
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1. Introduction 

In safety-relevant industries such as nuclear, oil and gas, automotive and chemical, fault diagnosis 

of Systems, Structures and Components (SSCs) is considered a critical task [1–3]. In particular, 

efficient fault diagnosis can aid to decide proper maintenance and, hence, increase production 

availability and system safety, while reducing overall corrective maintenance costs [4,5]. For these 

reasons, there is an increasing demand from industry for fault diagnosis techniques [6–9].  

Generally, fault diagnosis techniques can be categorized into physics-based and data-driven [10,11]. 

Physics-based techniques use explicit physical models to describe the relationships between the 

causes that determine the SSCs behavior and the signal evolutions [11–13]. Several methods have 

been proposed and used for fault diagnosis in nuclear industry, such as observer-based methods, 

parity space methods, Kalman filters and parameter identification-based methods [14–16]. 

However, the complexity of the phenomena involved and the highly non-linear relationships 

between the causes and the signal evolutions may pose limitations on their practical deployment 

[11,13]. 

On the other hand, data-driven techniques are empirically built to fit measured process data [17–

19]. For example, Artificial Neural Networks (ANNs), expert systems and fuzzy and neuro-fuzzy 

approaches have been successfully applied for fault diagnosis in the nuclear industry [20–22]. In 

this work, we focus on the development of a data-driven technique for fault diagnosis.  

One attractive way forward for building effective diagnosis models is to consider the knowledge 

coming from the fleet of similar SSCs [3,23]. In the industrial context, the term fleet refers to a set 

of 𝑃 systems that can share some technical features, environmental and operational conditions and 

usage characteristics. On this basis, three types of fleet can be envisaged: identical, homogenous 

and heterogeneous. Table 1 summarizes the types of fleet, their characteristics and a selection of the 

most relevant research work performed in the past, making an effective use of fleet data: 

Fleet type 

Characteristics 

Objective of the work Technical 

features 

Environmental and 

operational conditions 

Usage 

Identical Same Same Same 

Anomaly detection [5], RUL 

estimation [24] and technical 

solution capitalization [25,26] 

Homogenous Same/Different Same Same/Different 
Fault diagnostics and maintenance 

planning [27] 

Heterogeneous Same/Different Different Different Fault diagnostics [2,3,23]. 

Table 1: Types of fleet, characteristics and most relevant literature. 
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In identical fleet, the systems might have identical technical features and usage, and work in the 

same environmental and operational conditions: knowledge derived from such fleet has been used 

for defining thresholds for anomaly detection [5], Remaining Useful Life (RUL) estimation [24] and 

technical solution capitalization [25,26] for any system identical to the fleet members; 

In homogenous fleet, the systems might share some identical technical features that are influenced 

by similar environmental and operational conditions, but with few differences either on their 

features or on their usage: knowledge derived from this type of fleet has been used for developing 

diagnostics approaches for enhancing maintenance planning [27]. However, in a context where 

customized systems are common, these approaches may give poor results [3]; 

In heterogeneous fleet, the systems might have different and/or similar technical features, but with 

different usage under different environmental and operational conditions: this type of fleet can 

provide wider data and knowledge concerning the SSCs behaviour that are expected to reduce 

diagnosis uncertainty, and hence, improve the efficiency of the fault diagnosis task [2,3,23]. 

Most of the existing fleet-wide approaches for fault diagnosis treat only the information gathered 

from identical and/or homogenous fleets, rather than from heterogeneous ones [23]. In fact, the 

investigation on the benefit of utilizing the information of a heterogeneous fleet for fault diagnosis 

has been rarely addressed in the literature [23]. 

In this regard, the objective of the present work is to develop a framework for incrementally 

learning different turbine behaviours of a heterogeneous fleet of 𝑃 Nuclear Power Plants (NPPs) 

turbines. The final goal is to summarize the data and knowledge acquired from the past experience 

of the fleet turbines operations into a final, reconciliated consensus clustering of the different 

turbines behaviors under different environmental and operational conditions (namely normal 

condition, degraded condition, abnormal condition and outliers). 

In the context of fault diagnosis of an individual NPP turbine, the objective is to partition the 𝑁𝑝 

shut-down transients of the 𝑝-th plant, 𝑝 = 1, … , 𝑃, into 𝑀 dissimilar groups (whose number is “a 

priori” unknown) such that transients belonging to the same group are more similar than those 

belonging to other groups. In particular, one can distinguish, among the groups, anomalous 

behaviors of the equipment and relate them to specific root causes [28–31]. 

The problem of grouping the operational transients of the turbine can be formulated as an 

unsupervised clustering problem aimed at partitioning the transient data into homogeneous “a 

priori” unknown clusters for which the true classes are unknown [30,32]. 
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To this aim, an unsupervised clustering approach (sketched in Figure 1) has been proposed by some 

of the authors for combining in an ensemble the clustering results of i) data representative of the 

turbine behavior, i.e., seven signals of the turbine shaft vibrations (𝑗 = 1 base clustering), and 2) 

data representative of the environmental and operational conditions that can influence the turbine 

behavior, i.e., nominal values of turbine shaft speed, vacuum and temperature signals (𝑗 = 2 base 

clustering) [32]. In brief, the approach is based on the combination of: 1) a Cluster-based Similarity 

Partitioning Algorithm (CSPA) to quantify the co-association matrix that describes the similarity 

among the two base clusterings (refer to Appendix A for more details); 2) Spectral Clustering 

embedding an unsupervised K-Means algorithm to find the final consensus clustering based on the 

available co-association matrix (refer to Appendix B for more details); 3) the Silhouette index to 

quantify the goodness of the obtained clusters by choosing the optimum number of clusters in the 

final consensus clustering as that with the maximum Silhouette value, i.e., such that clusters are 

well separated and compacted (refer to Appendix C for more details). 

 

Figure 1: The unsupervised ensemble clustering approach [32]. 

In this regard, the final ensemble clustering of the generic 𝑝-th NPP turbine comprises 𝑃𝑝
∗ clusters 

of shut-down transients, representative of different behaviors of the turbine that are influenced and 

explained by different environmental and operational conditions, among them some anomalous 

behaviors of the turbines can be identified [32]. The proposed approach has been applied to the 

shut-down transients of two different turbines of two different NPPs (coded as FF1 and EE1) of 149 

and 116 multidimensional shut-down transients, respectively [32,33]. 

Due to the fact that the 𝑃 plants of the fleet are highly standardized, some clusters representative of 

turbines operations and independently obtained for the individual plants might be similar (hereafter 

called the best matching clusters) and could be reconciliated into a unique cluster that would gather 

more information collected from multiple plants and, thus, is expected to be more reliable and 

robust. 
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More specifically, when a new dataset of 𝑁𝑝+1  shut-down transients from the generic 𝑝 + 1-th NPP 

turbine becomes available, the previously obtained ensemble clustering is updated based on the 

clusters identified independently for the transients of the 𝑝 + 1-th NPP turbine.  

The scope of this work is to propose a framework for identifying the best matching clusters among 

the plants: these will be reconciliated into a unique consensus cluster composed by the transients of 

the clusters independently obtained for the plants. 

The proposed framework is validated on the two previously mentioned NPP turbines FF1 and EE1. 

The application of the framework leads to obtain a final, reconciliated consensus clustering 𝑃𝑓𝑖𝑛𝑎𝑙
∗  of 

7 and 13 clusters representative of unique turbines operations of the FF1 and EE1 plants, 

respectively, and 3 consensus clusters representative of similar turbines operations of the plants 

(best matching clusters). The performance of the final reconciliated consensus clustering 𝑃𝑓𝑖𝑛𝑎𝑙
∗

 
is 

quantified in terms of clusters separation and compactness, by resorting to the Silhouette validity 

index ([34]; see Appendix C), C-index [35] and Davies-Boludin (DB) index [36]. The exploited 

knowledge of the turbines can, then, be retrieved for the purpose of, for instance, life tracking, 

health state estimation and fault diagnosis of a new NPP turbine. 

For comparison, three other approaches are used to reconciliate the consensus clusters of the FF1 

NPP turbine on the basis of the received information from the EE1 NPP turbine: 1) clustering of the 

aggregated shut-down transients of FF1 and EE1 NPPs turbines by the unsupervised ensemble 

clustering approach, 2) the inclusion of the EE1 transients into the FF1 ensemble clustering by 

resorting to Fuzzy similarity measure [37–39] and 3) the classification of EE1 transients by a 

supervised classifier, such as a Fuzzy 𝐾-Nearest Neighbours algorithm (FKNN) [40–42] trained on 

FF1 clustering. Results are discussed and compared with those obtained with the proposed 

approach: it is concluded that the proposed approach is able to update effectively the clusters of the 

FF1 NPP turbine on the basis of the received information from the EE1 NPP turbine, and that it is 

superior to the other approaches with respect to the goodness of the final consensus clustering, 

computational demand, data requirements, and fault diagnosis effectiveness. 

Thus, the original contribution in this work is the development of a framework for incrementally 

learning the information brought by a heterogeneous fleet of different NPPs turbines based on the 

combination of: 

1) the unsupervised ensemble clustering approach [32], that overcomes the challenge to the 

existing clustering techniques by determining automatically the optimum number of clusters 

of the shut-down transients of each individual NPP turbine (which by most industrial 
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applications, is not known “a priori”); the clusters that result are well separated and 

compacted (as measured by the Silhouette index [34]);  

2) a reconciliation procedure for identifying the best matching clusters among the plants. The 

goodness of the final reconciliated clustering is quantified in terms of clusters separation and 

compactness. 

It is worth mentioning that the dimensionality and required completeness of the datasets (that need 

signals representative of both environmental and operational conditions (i.e., turbine shaft speed, 

vacuum and temperature) and component behaviours (i.e., vibrations)) make, in this work, difficult 

to show the application of the framework to additional dataset from other industries, because of 

confidentiality constraints of such datasets. 

The remaining of this paper is organized as follows. Section 2 illustrates the proposed framework 

for reconciliating the clusters of a fleet of industrial components for fault diagnosis. Section 3 and 

Section 4 describe how the proposed approach and three other alternative approaches are used for 

learning new data coming from a fleet of NPP turbines and updating the clustering results obtained 

by ensemble-clustering the transients coming from NPPs, respectively. Along with the description 

of the procedures, their application to the shut-down transients collected from a fleet of NPPs is 

shown. Finally, conclusions and perspectives are drawn in Section 5. 

2. The framework for reconciliating the clusters of a fleet of industrial 

components 

In this Section, the framework for reconciliating the clusters of a heterogeneous fleet of 𝑃 industrial 

components is proposed. The framework entails two steps and is sketched in Figure 2: 

Step 1: Clustering the transients of a generic 𝑝-th component by the unsupervised ensemble 

clustering approach. For the generic 𝑝-th component, the objective is to partition the 𝑁𝑝 shut-down 

transients into dissimilar groups of transients representative of different component behaviors 

influenced by different environmental and operational conditions. To this aim, the unsupervised 

ensemble clustering approach of Figure 1 (see Appendix A) has been set forth to build a consensus 

clustering 𝑃∗ from the base clusterings:  

1) 𝑗 = 1: Clustering of data representative of the component behaviour (such as vibrations): the 

outcome of this is groups of transients representing different behaviours of the component, e.g., 

normal condition, degraded condition, abnormal condition and outliers, 
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2) 𝑗 = 2: Clustering of data representative of the environmental and operational conditions that can 

influence the component behaviour (such as rotating speed, vacuum values, temperatures, pressures, 

etc.): the outcome of this is groups of transients representing different environmental and 

operational conditions experienced by the component, e.g., a group might be characterized by high 

temperature values and low vacuum values. 

The optimum number of clusters is selected among several candidates 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = [𝐶𝑚𝑖𝑛, 𝐶𝑚𝑎𝑥] 

based on the Silhouette validity index that measures the similarity of the data belonging to the same 

cluster and the dissimilarity to those in the other clusters (a large Silhouette value indicates that the 

obtained clusters are well separated and compacted ([34]; see Appendix C)). 

Step 2: Reconciliating the most similar consensus clusters obtained individually for each of the 

different plants. To capitalize the added information of a new coming component (i.e., 𝑝 + 1-th 

component) and, hence, to update the previous obtained consensus clustering 𝑃𝑝
∗ of the 𝑝-th 

component transients data, a reconciliation procedure is here proposed. The underlying approach is 

that of learning the novel information content of the new 𝑁𝑝+1 transients without forgetting the 

previously acquired knowledge that is summarized in the 𝑃𝑝
∗ consensus clustering (as well shall see 

in Section 4). Firstly, the 𝑁𝑝+1 transients have to be partitioned into groups representative of the 

𝑝 + 1-th component behavior under varying environmental and operational conditions of the new 

component as done in Step 1 for the 𝑝-th component. Once the consensus clusterings 𝑃𝑝
∗
 
and 𝑃𝑝+1

∗
 

of the two components are available, those composed by transients with similar behaviors are 

identified and reconciliated into unique clusters within the final ensemble clustering of the two 

plants 𝑃𝑝,𝑝+1
∗ .

 
The remaining clusters are left disjoint as they are representative of unique 

operational conditions of each component. 

The incremental learning process and the enveloping reconciliation approach is repeated for all the 

components available in the fleet to get the final clustering 𝑃𝑓𝑖𝑛𝑎𝑙
∗  that resumes the characteristic 

behaviours of all the possible (available) components operating in as large as possible variety of 

environmental and operational conditions. 

Once the final clustering 𝑃𝑓𝑖𝑛𝑎𝑙
∗

 
is obtained, the goodness of the final clusters identified is quantified 

in terms of their separation and compactness, as measured by internal validity indexes. These 

indexes evaluate the clustering results based on information intrinsic to the data itself, without 

resorting to any external information like true clustering results, which are not known “a priori” in 

most industrial applications [43]. In particular, we resort to the following three internal indexes:  
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• the Silhouette index ([34]; see Appendix C): it measures the similarity of the data belonging 

to the same cluster and the dissimilarity to those in the other clusters. The Silhouette index 

varies in the interval [-1,1] and should be maximized; 

• the C-index [35]: it defines the ratio between the sum of within-cluster distances and the 

distances considering all the pairs of the instances. The C-index ranges in the interval [0,1] 

and should be minimized; 

• the Davies-Boludin (DB) index [36]: it is based on the ratio of within-cluster and between-

cluster distances. The DB index ranges in the interval [0,∞) and should be minimized. 

Large Silhouette and small C-index and DB values indicate that the obtained clusters are well 

separated and compacted. 

It is important to point out that there exist other clustering validity indexes, the so called external 

validity indexes, that evaluate the goodness of the obtained clusters with respect to a pre-specified 

structure (assumed to be known “a priori”), like false-positive, false-negative and classification 

error, etc. [43]. However, the calculations of these indexes are not feasible in this work due to the 

unavailability of the true clustering results. 
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Figure 2: The proposed framework for reconciliating the consensus clusterings for a fleet of P components. 

In the following Section, the proposed framework is applied to 𝑃 = 2 NPPs turbines (FF1 and 

EE1). 
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3. Application of the reconciliation approach to two nuclear power plants 

turbines 

In NPPs, the turbine is one of the most important and critical rotating machinery for generating a 

large efficiency and peak factor. Unexpected failures are, indeed, usually accompanied with large 

downtimes, high cost, as well as possible safety and environmental implications [11,44].  

For these reasons, recognizing the health state of turbine (diagnostics) and predicting its future 

evolution (prognostics) are fundamentals to enable more reliable, economic and safer operation 

[45,46]. 

In this regard, we are looking for the failures of the turbine by investigating its shut-down transients 

since the turbine during shut-down transients are expected to provide better, more clear indications 

of the health state with respect to stationary conditions [30,47]. 

The application of the proposed framework presented in Section 2 is here presented with respect to 

a real industrial case concerning 𝑃 = 2 NPPs turbines (i.e., FF1 and EE1) with different numbers of 

shut-down multidimensional transients of 149 and 116, respectively. Each 𝑖-th transient is a 

multidimensional transient in a 𝑍 = 70 dimensional signal space with a time horizon of 𝑇 = 4500 

time steps of 2.5 hours each. It should be mentioned that throughout the paper, the values of the 

signals illustrated in the Figures are given on an arbitrary scale due to confidentiality reasons. 

3.1. Step 1: Clustering shut-down transients of the FF1 NPP turbine by the unsupervised 

ensemble clustering approach 

Starting from the available dataset of shut-down transients of the FF1 NPP turbine, different turbine 

behaviors explained by different environmental and operational conditions have been identified by 

resorting to the unsupervised ensemble clustering approach [32]. Table 2 reports the number of base 

clusters along with the optimum number of clusters obtained in the final consensus clustering 𝑃𝐹𝐹1
∗ . 

j=1 

Base clustering 

j=2 

Base clustering 

Consensus 

 clustering 

𝐶𝑜𝑝𝑡
1 = 5  𝐶𝑜𝑝𝑡

2 = 4 𝑃𝐹𝐹1
∗ = 10 

Table 2: Number of base clusters along with the optimum number of clusters in the final ensemble clustering of 

FF1 NPP. 

For the ease of clarity, Figure 3 shows the evolution of vibration signal 1 of the 𝑗 = 1 base 

clustering (5 clusters) and the corresponding turbine speed values. One can easily recognize that on 

one side the functional behaviors of transients belonging to clusters 1 to 4 (𝐶1
1, 𝐶2

1, 𝐶3
1, and 𝐶4

1) are 
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similar but with some peculiarities that make them splitting into 4 clusters rather than being 

clustered together, whereas the transients of cluster 5 (𝐶5
1) greatly differ from the others (outliers) 

[30]. 

 

Figure 3: Evolution of vibration signal 1 of the 5 obtained clusters of the 𝒋 = 𝟏 base clustering of FF1 NPP 

turbine and the corresponding turbine shaft speed values. 

Figure 4 shows the three clusters 𝐶1
2, 𝐶2

2 and 𝐶3
2 of 𝑗 = 2 base clustering (circle, square

 
and 

diamond markers, respectively, whereas the fourth cluster 𝐶𝑁𝑎𝑁
2

 
is

 
composed by transients with 

missing operational and environmental signal values and, thus, cannot be plotted). One can easily 

recognize that the shut-down transients belonging to 𝐶3
2 (diamonds) are influenced by “High” 

temperature values at the turbine inlet and “High” vacuum values compared to 𝐶1
2 and 𝐶2

2.
 

 

Figure 4: Plot of the values of the clusters obtained by 𝑗 = 2 base clustering 𝐶1
2, 𝐶2

2 and 𝐶3
2. 

The optimum number of clusters in the final consensus clustering is selected according to the 

Silhouette values for different numbers of clusters 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒  that span in the interval [4,20], where 

the lower bound (4) is the minimum between 𝐶𝑜𝑝𝑡
1

 
and 𝐶𝑜𝑝𝑡

2 , and the upper bound (20) is the number 

of the largest combination of the two base clusters (i.e., 4x5) [32]. 
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The optimum number of clusters in the final consensus clustering is found to be 𝑃𝐹𝐹1
∗ = 10, at 

which the Silhouette measure is maximized (star in Figure 5 (left)). Figure 5 (left) shows, indeed, 

that the Silhouette values for small and large numbers of 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒  are worse than for 𝑃𝐹𝐹1
∗ = 10 

(i.e., 0.8842), due to the dissimilarity of the data (inappropriately) assigned to the same clusters. 

The individual Silhouette values of each consensus cluster are shown in Figure 5 (right): the 

Silhouette values for most of the clusters are equal to 1, which indicates the goodness of the 

obtained clusters in terms of separation and compactness ([34]; see Appendix C).   

 

Figure 5: Silhouette values vs. cluster numbers (left) and the individual Silhouette values of each consensus 

cluster obtained for the optimum number of clusters (right). 

The obtained consensus results for 𝑗 = 1 and 𝑗 = 2 base clusterings are reported in Table 3. 

j=1 

Base clustering 

j=2 

Base clustering 

Consensus 

 clustering 

𝐶1
1 

𝐶3
2

 𝑃1
∗
 

𝐶1
2

 𝑃4
∗
 

𝐶2
1 

𝐶2
2

 𝑃5
∗
 

𝐶3
2

 𝑃6
∗
 

𝐶1
2

 𝑃10
∗

 

𝐶3
1 

𝐶3
2

 𝑃2
∗
 

𝐶𝑁𝑎𝑁
2

 𝑃3
∗
 

𝐶1
2

 𝑃8
∗
 

𝐶4
1 𝐶1

2
 𝑃9

∗
 

𝐶5
1 𝐶2

2
 𝑃7

∗
 

Table 3: Consensus results for 𝑗 = 1 and 𝑗 = 2 base clusterings. 

In fact, looking at the final consensus clustering one can recognize that transients of each cluster 

obtained by the 𝑗 = 1 base clustering are influenced by different environmental and operational 

conditions that are obtained by the 𝑗 = 2 base clustering. For example, the transients belonging to  
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𝐶2
1 of the 𝑗 = 1 base clustering have been splitted into three different final consensus clusters 

(𝑃5
∗, 𝑃6

∗, and 𝑃10
∗ ) each one is due to a different enviornmental and operational condition (𝐶2

2, 𝐶3
2, 

and 𝐶1
2) as recognized by the 𝑗 = 2 base clustering. 

3.2. Step 2: Reconciliating the most similar consensus clusters obtained individually for the 

two different plants 

The available information of the other turbine (i.e., EE1) is used to update the previous obtained 

consensus clusters of FF1. 

To avoid catastrophic forgetting and the need to retrain the diagnostic tool (as we shall see in 

Section 4), the proposed framework suggests a reconciliation approach that aims at learning the 

novel information content of the new EE1 transients without forgetting the previously acquired 

knowledge of the 𝑃𝐹𝐹1
∗ = 10

 
consensus clusters of FF1 transients. To this aim, the 𝑁𝐸𝐸1 = 116 

transients have been partitioned into 𝑃𝐸𝐸1
∗ = 16 turbine behaviors explained by different 

environmental and operational conditions, by resorting to unsupervised ensemble clustering. Table 

4 reports the number of base clusters along with the optimum number of clusters obtained in the 

final consensus clustering 𝑃𝐸𝐸1
∗ = 16. 

j=1 

Base clustering 

j=2 

Base clustering 

Consensus 

 clustering 

𝐶𝑜𝑝𝑡
1 = 5 𝐶𝑜𝑝𝑡

2 = 4 𝑃𝐸𝐸1
∗ = 16 

Table 4: Number of base clusters along with the optimum number of clusters in the final ensemble clustering of 

EE1 NPP. 

Figure 6 shows the evolution of vibration signal 2 of the 𝑗 = 1 base clustering (4 clusters) and the 

corresponding turbine speed values. One can easily recognize that, on one side, the functional 

behaviors of transients belonging to clusters 1 to 3 (𝐶1
1, 𝐶2

1 and 𝐶3
1) are similar but with some 

peculiarities that make them splitting into 3 clusters rather than being clustered together, whereas 

the outliers (𝐶4
1)

 
are different as they have a very dispersed and wide peak value around 700 rpm. It 

is worth mentioning that the fifth cluster 𝐶𝑁𝑎𝑁
1

 
is

 
composed by transients containing non-physical 

values of the vibration signals and, thus, cannot be plotted. 
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Figure 6: Evolution of vibration signal 2 of the 4 clusters (𝐶1
1, 𝐶2

1, 𝐶3
1 and 𝐶4

1) of the j=1 base clustering and the 

corresponding turbine shaft speed values of EE1 NPP turbine. 

Figure 7 shows the three clusters 𝐶1
2, 𝐶2

2 and 𝐶3
2 of 𝑗 = 2 base clustering (circle, square

 
and 

diamond markers, respectively, whereas the fourth cluster 𝐶𝑁𝑎𝑁
2

 
is

 
composed by transients with 

missing operational and environmental signal values and, thus, cannot be plotted). One can easily 

recognize that the shut-down transients belonging to 𝐶1
2 (circles) are influenced by “High” 

temperature values at the turbine inlet and “High” vacuum values compared to 𝐶2
2 and 𝐶3

2
.
  

 

Figure 7: Plot of the values of the clusters obtained by j=2 base clustering 𝐶1
2, 𝐶2

2 and 𝐶3
2. 

The optimum number of clusters in the final consensus clustering is selected according to the 

Silhouette values for different numbers of clusters 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒  that span in the interval [4,20], where 

the lower bound (4) is the minimum between 𝐶𝑜𝑝𝑡
1  and 𝐶𝑜𝑝𝑡

2 , and the upper bound (20) is the number 

of the largest combination of the two base clusters (i.e., 4x5) [33]. 

The optimum number of clusters in the final consensus clustering is found to be  

𝑃𝐸𝐸1
∗ = 16, at which the Silhouette measure is maximized (star in Figure 8 (left)). Figure 8 (left) 

shows, indeed, that the Silhouette values for small and large numbers of 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒  are worse than 

for 𝑃𝐸𝐸1
∗ = 16 (i.e., 0.8734), due to the dissimilarity of the data (inappropriately) assigned to the 

same clusters ([34]; see Appendix C). The individual Silhouette values of each consensus cluster 

are shown in Figure 8 (right).   
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Figure 8: Silhouette values vs. cluster numbers (left) and the individual Silhouette values of each consensus 

cluster obtained for the optimum number of clusters (right). 

The obtained consensus results for 𝑗 = 1 and 𝑗 = 2 base clusterings are reported in Table 5. 

j=1 

Base clustering 

j=2 

Base clustering 

Consensus 

 clustering 

𝐶1
1 

𝐶1
2

 𝑃7
∗
 

𝐶2
2

 𝑃5
∗
 

𝐶𝑁𝑎𝑁
2

 𝑃15
∗

 

𝐶2
1 

𝐶1
2

 𝑃11
∗

 

𝐶2
2

 𝑃3
∗
 

𝐶3
2

 𝑃13
∗

 

𝐶3
1 

𝐶1
2

 𝑃1
∗
 

𝐶2
2

 𝑃12
∗

 

𝐶3
2

 𝑃14
∗

 

𝐶4
1 

𝐶1
2

 𝑃6
∗
 

𝐶2
2

 𝑃2
∗
 

𝐶3
2

 𝑃4
∗
 

𝐶𝑁𝑎𝑁
2

 𝑃16
∗

 

𝐶𝑁𝑎𝑁
1  

𝐶1
2

 𝑃9
∗
 

𝐶2
2

 𝑃8
∗
 

𝐶3
2 𝑃10

∗  

Table 5: Consensus results for j=1 and j=2 base clusterings. 

To identify the consensus clusters among 𝑃𝐹𝐹1
∗  and 𝑃𝐸𝐸1

∗
 
with similar vibrational behaviors (i.e., 

hereafter called the best matching clusters), a preliminary visual analysis has been done for 

identifying the most similar vibration signals of the transients composed by each exhaustive pair of 
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the consensus clusters 𝑃𝐹𝐹1
∗

 
and 𝑃𝐸𝐸1

∗ : the clusters with similar vibrational behaviors have been 

selected as best matching clusters (reported in Table 6).  

 
Best Matching 

cluster 1 

Best Matching 

cluster 2 

Best Matching 

cluster 3 

FF1 𝑃9
∗ 𝑃8

∗
 

𝑃2
∗
 

EE1 𝑃11
∗  𝑃5

∗
 

𝑃7
∗
 

Table 6: Best matching consensus clusters of FF1 and EE1 NPPs turbines. 

For clarification purposes, Figure 9 shows the seven vibration signals of the transients belonging to 

the identified best matching cluster # 1. Looking to the curves, one can recognize that the transients 

have, indeed, similar vibrational behaviors. In fact, the differences among the transients of each best 

matching cluster are related to the magnitude of the peaks, e.g., looking to the Figure, the 

magnitude of the peak around the turbine shaft speed of 800 rpm of vibration signal 3 is larger for  

𝑃9
∗

 
transients than for the transients of 𝑃11

∗ , and/or to the delay in the transients occurrences. 

However, their functional behaviors are similar and, hence, they have been selected as the best 

matching clusters between the plants. This suggests us that, practically, one can identify the best 

matching clusters by resorting to functional similarity methods [48,49] for quantifying the extent of 

similarity of clusters obtained for each plant independently (this will be the focus of future research 

work). 

 

Figure 9: Evolution of the 7 vibration signals of the best matching clusters 𝑷𝟗
∗  (FF1) with 𝑷𝟏𝟏

∗

 
(EE1). 

Furthermore, Figure 10 (right) shows the environmental and operational conditions mean values 

(𝑗 = 2 base clustering) (dots) of the transients composed by the best matching clusters of FF1 

(𝑃9
∗, 𝑃8

∗, 𝑃2
∗) and EE1 (𝑃11

∗ , 𝑃5
∗, 𝑃7

∗). Looking at Figure 10 (right), one can notice that: 

1) The evolution of the turbines behaviors (i.e., dashed line for FF1 and solid line for EE1) through 

the three successive behaviors of the best matching clusters is similar for the two plants due to the 

similar changes of the environmental and operational conditions that influence the turbines 
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behavior. For example, the evolution of the turbine behavior of the FF1 NPP from  

𝑃9
∗ to 𝑃8

∗ is similar to the evolution of the turbine behavior of the EE1 NPP from  

𝑃11
∗  to 𝑃5

∗: both are caused by a decrease of the vacuum value and of the maximum inlet temperature 

value. Similarly, the evolution of the turbine behavior of the FF1 NPP from 𝑃8
∗ to 𝑃2

∗ is similar to 

the evolution of the turbine behavior of the EE1 NPP from 𝑃5
∗ to 𝑃7

∗: both are caused by an increase 

of the vacuum value and of the maximum inlet temperature value. 

2) The dashed and solid lines are displaced from each other in the environmental and operational 

conditions space. This can be justified by the fact that the two turbines are influenced by 

environmental and operational conditions displaced from each other as shown in Figure 10 (left):  

• the shut-down transients belonging to the EE1 plant (squares) are influenced, on average, 

by “high” vacuum values and “high” temperatures values at the turbine inlet, 

• the shut-down transients belonging to the FF1 plant (circles) are influenced, on average, by 

“low” vacuum values and “low” temperatures values at the turbine inlet. 

 

Figure 10: Plot of the j=2 base clustering mean values (dots) of the 3 best matching clusters (right) along with j=2 

base clustering values of all transients of the two NPPs turbines (left). 

In addition to that, the reconciliation strategy leads to the reduction of the consensus clusters to 23 

instead of the 26 consensus clusters individually obtained for the two plants: 

1) 7 clusters contain transients with different vibrational behaviors caused by different 

environmental and operational conditions, but uniquely occurred in FF1 NPP,  

2) 13 clusters contain transients with different vibrational behaviors caused by different 

environmental and operational conditions, but uniquely occurred in EE1 NPP, 
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3) 3 clusters contain transients with different vibrational behaviors caused by different 

environmental and operational conditions, but similarly occurred in both plants.  

The goodness of the final obtained clusters is verified with respect to the cluster separation and 

compactness by resorting to the Silhouette validity index ([34]; see Appendix C)), C-index [35] and 

DB criterion [36]. Figure 11 shows the individual Silhouette values of the 23 consensus clusters: 

1) Most of the clusters that belong either only to FF1 or to EE1 (dark shade of color) have 

Silhouette values equal to 1, which indicates that these clusters are composed by very similar 

transients, 

2) The Silhouette values of the three reconciliated clusters (light shade of color) have low Silhouette 

values compared to the others. This can be explained by the fact that either the transients from the 

two plants are poorly-matched and/or the consensus clusters independently obtained for the 

individual two plants are not originally composed by transients similar to each other (low Silhouette 

values as shown in Figure 5 and Figure 8 for FF1 and EE1, respectively).  

 

Figure 11: Silhouette values for the obtained consensus clusters of the reconciliated final ensemble clustering. 

In fact, the consensus cluster 𝑃2
∗ of FF1 has a Silhouette value of 1 which indicates that the 

transients composed by the cluster are well-matched to each other within the cluster and poorly-

matched to other transients in the other clusters with respect to both 𝑗 = 1 and 𝑗 = 2 base 

clusterings (Figure 5), whereas the Silhouette value of the consensus cluster 𝑃7
∗ of EE1 is ~0.2, 

which indicates that the transients composed by the cluster are poorly-matched to each other within 

the cluster but with some similarities to those in the other clusters with respect to both 𝑗 = 1 and 

𝑗 = 2 base clusterings (Figure 8). 
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3) The average Silhouette value of the overall 23 consensus clusters is equal to 0.8227. The value is, 

indeed, representative of the goodness of the final obtained clusters.  

For completeness, Table 7 reports the average C-index and DB values of the  

𝑃𝑓𝑖𝑛𝑎𝑙
∗  consensus clusters compared to the individual 𝑃𝐹𝐹1

∗  and 𝑃𝐸𝐸1
∗  consensus clusters of FF1 and 

EE1 NPPs turbines, respectively. One can notice that: 

• the small C-index and DB values (i.e., close to 0) confirm (in support to 3) above) the 

goodness of the obtained 𝑃𝐹𝐹1
∗ , 𝑃𝐸𝐸1

∗   and 𝑃𝑓𝑖𝑛𝑎𝑙
∗  consensus clusters, in terms of their 

separation and compactness;  

• the C-index and DB values of the 𝑃𝑓𝑖𝑛𝑎𝑙
∗  consensus clusters are slightly higher (but still 

good) than those of FF1 and EE1 NPPs turbines, as discussed in 2) above. 

 C-index DB 

𝑷𝑭𝑭𝟏
∗  0.0274 0.4973 

𝑷𝑬𝑬𝟏
∗  0.0281 0.4247 

𝑷𝒇𝒊𝒏𝒂𝒍
∗  0.0304

 
0.6162

 

Table 7: Average C-index and DB values of the final consensus clusters, compared to FF1 and EE1 consensus 

clusters. 

It is worth mentioning that the unsupervised ensemble clustering (Step 1) has been performed with 

a Matlab code that has been in-house developed at the Laboratorio di Analisi di Segnale e Analisi di 

Rischio (LASAR, Laboratory of Signal and Risk Analysis of the Department of Energy of the 

Politecnico di Milano (www.lasar.polimi.it)); the computational time needed to run the code on an 

Intel Core i5 with data taken from the 𝑃 = 2 NPPs turbines with 149 and 116 shut-down transients, 

respectively, is equal to 5 minutes. Since the proposed reconciliation approach (Step 2) matches 

(both by visual analysis and similarity matching) the results previously obtained by ensemble 

clustering performed (independently) on the 𝑁𝑝 and 𝑁𝑝+1 transients, the proposed framework is 

expected to be capable of integrating consensus clusters of individual plants with low computational 

efforts, also when dealing with even larger fleet dimensions. 

However, to better verify the performance of the proposed framework, three alternative approaches 

are applied to the case study and their results are compared with those obtained by the proposed 

framework. 

http://www.lasar.polimi.it)/
http://www.lasar.polimi.it)/
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4. Comparison with other approaches 

For comparing the results of the proposed framework for reconciliating different final ensemble 

clusters of different turbines, three other approaches are used, alternatively, to reconciliate the 

consensus clusters of the FF1 NPP turbine on the basis of the received information from the EE1 

NPP turbine that are: 1) clustering of the aggregated shut-down transients of the FF1 and EE1 NPPs 

turbines by the unsupervised ensemble clustering approach, 2) the inclusion of the EE1 transients 

into FF1 ensemble clustering by resorting to Fuzzy similarity measure [37–39] and 3) the 

classification of the EE1 transients by a supervised classifier, such as a Fuzzy 𝐾-Nearest 

Neighbours algorithm (FKNN) [40–42] trained on FF1 consensus clustering. 

4.1. Clustering of the aggregated shut-down transients of the FF1 and EE1 NPPs turbines by 

the unsupervised ensemble clustering approach 

This approach aims at aggregating the transients of the available 𝑝 + 1-th component, 𝑝 = 1, . . , 𝑃, 

(resulting in 𝑁𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 1,2,…,𝑝+1 = 𝑁1 + 𝑁2 + ⋯ + 𝑁𝑝+1), and clustering them into 

𝑃𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 1,2,…,𝑝+1
∗  groups by resorting to the ensemble clustering approach of Section 2, Step 1 

(see Appendix A), without any reconciliation (Step 2). 

Figure 12 shows its application to the two available dataset of the FF1 and EE1 plants: the approach 

starts by aggregating the transients of the two plants (resulting 𝑁𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐹𝐹1,𝐸𝐸1 = 149 + 116 =

265) and, then, clustering them into 𝑃𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐹𝐹1,𝐸𝐸1
∗  groups by resorting to the ensemble 

clustering approach of Section 2, Step 1.  
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Figure 12: Clustering of the aggregated shut-down transients of FF1 and EE1 NPPs turbines by the 

unsupervised ensemble clustering approach. 

Table 8 reports the number of base clusters along with the optimum number of clusters obtained in 

the final consensus clustering that turns out to be 𝑃𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐹𝐹1,𝐸𝐸1
∗ = 12. The optimum number 

has been selected according to the Silhouette values for different numbers of clusters 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 that 

span in the interval [4,20], where the lower bound (4) is the minimum between 𝐶𝑜𝑝𝑡
1  and 𝐶𝑜𝑝𝑡

2  and 

the upper bound (20) is the number of the largest combination of the two base clusters (i.e., 4x5) 

(see star in Figure 13 (left) that else shows that the Silhouette values for small and large numbers of 

𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒  are worse than for 𝑃𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐹𝐹1,𝐸𝐸1
∗ = 12 (i.e., 0.8258), due to the dissimilarity of the 

data (inappropriately) assigned to the same clusters).  

j=1 

Base clustering 

j=2 

Base clustering 

Consensus 

 clustering 

𝐶𝑜𝑝𝑡
1 = 5 𝐶𝑜𝑝𝑡

2 = 4 𝑃𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐹𝐹1,𝐸𝐸1
∗ = 12 

Table 8: Number of base clusters along with the optimum number of clusters in the final ensemble clustering of 

the aggregated FF1 and EE1 NPPs shut-down transients. 

The individual Silhouette values of each of the obtained consensus clusters of the  

𝑃𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐹𝐹1,𝐸𝐸1
∗ = 12

 
are shown in Figure 13 (right): the Silhouette values for most of the 

FF1 NPP
NFF1 transients

EE1 NPP
NEE1 transients

Environmental and 

operational 

conditions

Unsupervised 

ensemble clustering

Base clustering j=1 

Turbine vibrational 

conditions

Base clustering j=2 

Aggregated set 

of transients

1, 1 1 1aggregated FF EE FF EEN N N= +
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-3
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-1

0

1

2
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4

P*
7

*
1, 1aggregated FF EEP

Consensus clustering of the 

aggregated FF1 and EE1 

NPPs turbines transients
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clusters are equal to 1, which indicates the goodness of the obtained clusters in terms of separation 

and compactness [34]. 

   

Figure 13: Silhouette values vs. cluster numbers (left) and the individual Silhouette values of each consensus 

cluster obtained for the optimum number of clusters (right). 

In this regard, 12 different groups of shut-down transients, representative of different behaviors 

explained by different environmental and operational conditions are obtained. It is worth 

mentioning that some consensus clusters are mainly composed by transients occurring 

independently in each plant (unique consensus clusters for each plant), whereas some others are 

composed by a combination of the transients occurring in the two plants (common consensus 

clusters between the plants), as reported in Table 9.  

Consensus of FF1 𝑃3
∗ 𝑃5

∗
 

𝑃6
∗
 

𝑃7
∗
 

  

Consensus of EE1  𝑃8
∗ 𝑃11

∗
 

    

Common consensus 𝑃1
∗
 

𝑃2
∗
 

𝑃4
∗
 

𝑃9
∗
 

𝑃10
∗

 
𝑃12

∗
 

Table 9: Consensus clusters of the aggregated shut-down transients of the two plants. 

Moreover, it is worth mentioning that two clusters 𝑃9
∗ and 𝑃10

∗  of the final consensus clustering 

aggregate the outliers which belong to 𝐶5
1 and

 
𝐶4

1 of the 𝑗 = 1 base clustering and occur in the FF1 

and EE1 plants, respectively. However, despite the fact that the overall Silhouette value (i.e., 

0.8258) and also the C-index value (i.e., 0.0194) and the DB value (i.e., 0.3262) indicate the 

goodness of the obtained clusters, this approach: 

1) entails discarding the existing 𝑃𝐹𝐹1
∗ = 10 consensus clusters (representative of the FF1 plant 

turbine behaviors under different environmental and operational conditions) and computation-costly 

retraining the diagnostic tool with all data that have been accumulated thus far (i.e., 

𝑁𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐹𝐹1,𝐸𝐸1 = 149 + 116 = 265). This approach would result in a catastrophic forgetting 

of the acquired information contained in the 𝑃𝐹𝐹1
∗ = 10 consensus clusters [50,51], and hence, the 

detailed analysis of each plant will be discarded once the whole transients are aggregated together. 
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For this reason, this approach cannot be used to predict the health state of new incoming NPP 

turbines, 

2) is considered infeasible for real diagnostic systems due to the computational efforts required for 

retraining on a large number of transients from a large number of plants [9]. In fact, the application 

of the unsupervised ensemble clustering approach to the aggregated set of transients of the two 

NPPs turbines (i.e., 256 transients) requires 12.6 minutes, which is more than double of the 5 

minutes required by the reconciliation framework proposed in Section 2. 

4.2 Inclusion of a new transient occurring in the EE1 NPP turbine into the ensemble 

clustering of FF1 NPP turbine 

Another approach consists in the inclusion of the shut-down transients of a new 𝑝 + 1-th 

component, into the reference consensus clusters obtained from the previous available components, 

i.e., 1, … , 𝑝. The idea is that once the 𝑃1,..,𝑝
∗

 
ensemble clustering of the 𝑝 components is obtained, the 

fuzzy similarity measure [37–39] is used to verify its capability to accommodate the new 𝑁𝑝+1 

transients of the 𝑝 + 1-th component by assigning the transients to the reference consensus clusters 

for which the obtained similarity is the largest. In this way, we can avoid extra costs for training the 

diagnostic tool and/or overtraining it (Section 4.1). 

The procedural developments of the approach with respect to the available two NPPs turbines are 

summarized in the following two steps and reported in the pseudo-code of Figure 14. It is worth 

mentioning that a group of 11 transients containing non-physical values of the vibration signals of 

𝑗 = 1 base clustering has been excluded from the analysis and, hence, 𝑁𝐸𝐸1 = 116 − 11 = 105.  

Step 1: Quantification of the similarity of a new coming transient of the EE1 NPP with respect to 

the transients belonging to each 𝑃𝐹𝐹1
∗

 
consensus clusters previously obtained for the individual FF1 

NPP. To this aim, a fuzzy similarity measure is used to determine the degree of closeness of each 𝑒-

th transient, 𝑒 = 1, … ,105 occurring in EE1 plant with each 𝑓-th transient occurring in FF1 plant 

and allocated to the 𝑚-th consensus cluster, 𝑓 = 1, … , 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝐹𝐹1
∗ (𝑚)), 𝑚 = 1, … ,10, with 

reference to the pointwise difference between the values of the matrices 𝑌̿𝑒 [7,800] and 𝑌̿𝑓 [7,800], 

where 𝑦𝑧𝑡

𝑒
𝑓⁄
 is the 𝑡-th vibrational measurement, 𝑡 = 1, … ,800, of the 𝑧-th vibrational signal, 𝑧 =

1, … ,7, of matrix 𝑌̿𝑒 and 𝑌̿𝑓, respectively [30]. The pointwise difference 𝛿𝑒𝑓
𝑚  between the 

7*800=5600 values of transient 𝑌̿𝑒 and transient 𝑌̿𝑓 of the 𝑚-th consensus cluster is defined by Eq. 

(1): 
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The pointwise difference of the two transients is then evaluated with reference to an “approximately 

zero” fuzzy set (FS) specified by a function which maps 𝛿𝑒𝑓
𝑚  into a value 𝜇𝑒𝑓

𝑚  of membership to the 

condition of “approximately zero”: values of 𝜇𝑒𝑓
𝑚  close to 0 indicate that the signal evolutions in the 

two transients e and f are very different, whereas values close to 1 indicate high similarity. In this 

work, the bell-shaped function shown in Eq. (2) is used with the optimum value of the bell-shaped 

function parameter 𝜎 at 𝜎 = 2.92: 

 𝜇𝑒𝑓
𝑚 = 𝑒

(𝛿𝑒𝑓
𝑚 )

2

𝜎2  (2) 

Then, the mean similarity value of each 𝑖-th transient of the EE1 plant with all the transients of each 

𝑚-th consensus cluster of FF1 plant is quantified as shown in Eq. (3). 

                                        
𝑆𝑒

𝑚 = 𝑚𝑒𝑎𝑛𝑓(𝜇𝑒𝑓
𝑚 ), 𝑓 = 1, … , 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝐹𝐹1

∗ (𝑚)), 𝑚 = 1, … ,10
  
  (3) 

Step 2: Allocate the new coming transient to any of the 𝑃𝐹𝐹1
∗  consensus clusters. In this Step, all of 

the transients of EE1 NPP turbine (𝑁𝐸𝐸1 = 116 − 11 = 105) will be allocated to one of FF1 

consensus clusters for which the mean similarity measure is the largest. 

 

Figure 14: The pseudo-code of the procedural steps of the alternative approach 2. 

To verify if the consensus clusters fit the allocated transients of EE1 or not, one way can be by 

clustering the mean similarity values of EE1 transients into dissimilar groups, whose number is “a 

Inputs: 𝑃𝐹𝐹1
∗  consensus clusters of the FF1 NPP turbine (Section 3.1) and the 𝑁𝐸𝐸1 new coming transients of

EE1 NPP turbine

Outputs: Allocation of EE1 transients to one of FF1 consensus clusters with a fuzzy similarity measure

Step 1: Quantification of the similarity of a new coming transient of the EE1 NPP with respect to the transients

belonging to each 𝑃𝐹𝐹1
∗ consensus clusters previously obtained for the individual FF1 NPP

for e=1:105 % Number of transients of the EE1 NPP
for m=1:10 % Number of consensus clusters of the FF1 NPP

for f=1:length(𝑃𝐹𝐹1
∗ (𝑚)) % Number of transients belonging to each consensus clusters of the FF1 NPP

• Quantify the similarity of each e-th transient with respect to the transients belonging to each m-th

consensus cluster, following Eqs. (1) and (2).

end

• Compute the corresponding mean similarity value, following Eq. (3).

end

end

Step 2: Allocate the new coming transient to any of the 𝑃𝐹𝐹1
∗ consensus clusters

for e=1:105 % Number of transients of the EE1 NPP
• Allocate the new coming e-th transient to the consensus cluster for which the similarity is the largest.

end
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priori” unknown. The motivation of doing this is to split the similarity values of the transients’ 

allocation into different groups with different categories of the similarity values and, then, select 

those with largest similarity values with respect to a fixed threshold.  

In this regard, the optimum number of clusters 𝐶∗ is selected according to the values of the 

Silhouette index [34] for different numbers of clusters 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 that span the interval [2,13]: the 

optimum number of clusters 𝐶∗ is the value at which the Silhouette is maximized, i.e., 𝐶∗ = 2 (star 

in Figure 15 (left)). 

The clustering results are shown in Figure 15 (right): one can consider a fixed threshold value of 

0.12 for which the transients with similarity values larger than the threshold (i.e., transients of 

cluster 2 – triangles markers in Figure 15 (right), respectively) are considered well allocated to FF1 

consensus clusters with high confidence level, whereas the transients with similarities lower than 

the threshold (i.e., transients of cluster 1– squares markers in Figure 15 (right), respectively) are 

considered allocated to FF1 consensus clusters with low confidence levels. In this regard, one can 

conclude that FF1 consensus clustering cannot accommodate the whole transients of the EE1 NPP 

turbine. 

             

Figure 15: Silhouette values vs. cluster numbers (left) and clustering results of the mean similarity values of the 

new coming transients (right). 

For example, Figure 16 shows the mean similarity values of transient 𝑒 = 23 (transient from cluster 

2) (Figure 16 (left)) and 𝑒 = 88
 
(transient from cluster 1) (Figure 16 (right)) of the EE1 turbine, 

respectively with respect to the 𝑃𝐹𝐹1
∗ = 10

 
consensus clusters of FF1 plant. It is easy noticing that 

the largest similarity values of the two transients occur with the transients of 𝑃5
∗

 
of FF1 (light shade 

of color).  
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Figure 16: Mean similarity values of transients 𝒆 = 𝟐𝟑
 
(left) and 𝒆 = 𝟖𝟖

 
(right) with respect to the 𝑷𝑭𝑭𝟏

∗ = 𝟏𝟎 

consensus clusters of FF1 plant. 

For the sake of clarity, Figure 17 shows the transients of 𝑃5
∗

 
of FF1 (solid) along with the allocated 

EE1 transients 𝑒 = 23 and 𝑒 = 88 (dashed) for three vibration signals 1, 2 and 3. It is worth 

noticing that the transient 𝑒 = 23
 
(Figure 17 (left)) seems to be well allocated to 𝑃5

∗

 
of FF1, whereas 

the transient
 
𝑒 = 88

 
(Figure 17 (right)) does not (allocated with low confidence level); for example, 

the transient has no peak for vibration signal 1 around the turbine shaft speed of 920 rpm. 

 

Figure 17: Transients 23e =  (left) and 88e =  (right) with the transients of 
*

5P
 
of FF1 NPP . 

To quantify the influence of EE1 transients’ allocations on the goodness of the updated FF1 

consensus clusters, Table 10 reports the average Silhouette, C-index and DB values of the overall 

updated FF1 consensus clusters. One can easily recognize that the quality of the final clusters, in 

terms of cluster separation and compactness, is much worse than for the proposed approach (Table 

7 and Figure 11), as shown by the small Silhouette value and large C-index and DB values. 
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Silhouette C-index DB 

0.2594 0.1214 1.7601 

Table 10: Average Silhouette, C-index and DB values of the updated FF1 consensus clusters after the allocations 

of EE1 transients by the fuzzy similarity measure. 

For completeness, the application of this approach to the available dataset requires 4.5 minutes, 

which is very much in line with the computational efforts required by the reconciliation framework 

proposed. 

4.3. Classifying the shut-down transients of the EE1 NPP turbine by a classifier trained on 

FF1 consensus clusters 

In this approach, the objective is to use the labelled transients of the 𝑃1,…,𝑝
∗

 
consensus clusters 

previously obtained for the 𝑝 components, i.e., 𝑝 = 1, … , 𝑃, as reference trajectories for training a 

supervised classifier. The resulting classifier is, then, used to classify the new transients of 𝑝 + 1-th 

component into the appropriate consensus clusters of the 𝑝 plants with associated membership 

values. 

Several classification algorithms have been proposed and used in practice, like Support Vector 

Machines (SVM) [52], Naïve Bayes classifier [53], Decision trees [54], Discriminant analysis [55], 

Classification and Regression Tree (CART) [56,57] and Fuzzy 𝐾-Nearest Neighbours (FKNN) [40–

42]. In this work, we resort to the Fuzzy 𝐾-Nearest Neighbors (FKNN) algorithm, because FKNN is 

simple, requires less computation time during the training phase and is one of the most used [42]. 

The procedural steps for the application of this approach to the available two NPPs turbines are 

given in the pseudo-code of Figure 18. The approach entails the following two steps: 

Step 1: Training the Fuzzy 𝐾-Nearest Neighbours with FF1 data. To this aim, the training dataset 

𝑋̿𝐹𝐹1 is constructed on the basis of the data available from FF1 NPP turbine summarized in the 

𝑃𝐹𝐹1
∗ = 10

 
consensus clusters, as we have seen in Section 2. Therefore, the training dataset 𝑋̿𝐹𝐹1 is 

composed by:  

i) data representative of the turbine condition (𝑗 = 1), and of the environmental and operational 

conditions that can influence the vibrations (𝑗 = 2), and  

ii) knowledge represented by the 10 labels obtained by the application of the unsupervised ensemble 

clustering algorithm on the information available from the FF1 NPP turbine [32].  

Step 2: Classifying new coming transients from the EE1 NPP. Once the FKNN classifier has been 

trained on FF1 data, the trained FKNN is used to classify the 𝑁𝐸𝐸1 transients of the EE1 turbine to 
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the consensus clusters with associated membership values. The obtained results are stored in matrix 

𝑌̿𝐸𝐸1 with a size of 𝑁𝐸𝐸1x2. 

The basic idea of FKNN classifier is to determine the unknown consensus cluster of a new coming 

transient of the EE1 turbine by looking at the known consensus clusters of its neighbors. More 

specifically, the classification of a new coming 𝑒-th transient of the EE1 turbine, 𝑒 = 1, … , 𝑁𝐸𝐸1, is 

done by assignment to the 𝑚-th consensus cluster, 𝑚 = 1, … , 𝑃𝐹𝐹1
∗ ,

 
with a certain membership value 

𝜇𝑒
𝑚, that is the highest among the other membership values to the other consensus clusters. The 

membership value is a function of the distances between the new coming 𝑒-th transient and its 𝐾th 

nearest neighbors and their consensus clusters memberships, where the 𝐾th nearest neighbors are 

the 𝐾 transients of the training dataset that are closest to the new transient according to the 

Euclidean distance [42]. 

 

Figure 18: The pseudo-code of the procedural steps of the alternative approach 3. 

It is worth mentioning that the FKNN is trained on the training dataset 𝑋̿𝐹𝐹1 via the 10-fold Cross-

Validation (CV) analysis [58] and its classification performance is evaluated by resorting to external 

validity measures [59], e.g., false-positive rate and false-negative rate.  

Figure 19 shows the largest membership values of the EE1 transients classified to FF1 consensus 

clusters using the optimum 𝐾 value, 𝐾∗ = 7: the optimum 𝐾 value is identified via a sensitivity 

analysis performed for investigating the influence of different 𝐾 values on the quality of the 

updated FF1 consensus clusters, in terms of clusters separation and compactness. The 𝐾 value at 

which the clusters are well separated and compactness is selected to be the optimum value (refer to 

Appendix D for more details on the selection procedure of the 𝐾∗). It is worth mentioning that 

among 𝑁𝐸𝐸1 = 116 transients, the groups of 12 transients and 8 transients containing non-physical 

Inputs: training dataset of FF1 NPP turbine with the 10 labels obained in Section 3.1 and the EE1

transients which need to be allocated

Outputs: Allocation of EE1 transients to one of FF1 consensus clusters with a membership value

Step 1: Training the FKNN with training dataset

Step 2: Classifying new coming transients from the EE1 NPP turbine

for % Number of new coming transients of the EE1 NPP

• Calculate the Euclidean distances between the e-th transient and the whole transients of FF1

• Identify the nearest neighbor transients of the training dataset that are closest to the e-th coming

transient ( smallest Euclidean distances)

• Calculate the membership values of the e-th transient to all of the FF1 consensus clusters as a

function of its distances to the nearest transients and their consensus clusters memberships

• Assign the e-th transient to the m-th consensus cluster, , with a certain membership

value , that is the highest among the other membership values of the e-th transient to the other

consensus clusters.

end
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values of the signals used for 𝑗 = 1 and 𝑗 = 2 base clusterings, respectively have been excluded 

from the analysis (𝑁𝐸𝐸1 = 116 − 20 = 96). 

 

Figure 19: Largest membership values for each transient of EE1 plant. 

For evaluating the results, one can consider a fixed threshold value of 0.5: if the transient has a 

membership value larger than the threshold (i.e., 70 out of 96 transients), it is considered well 

allocated to FF1 consensus clusters with high confidence level (circles); on the contrary, if a 

transient has a membership value lower than the threshold (i.e., 26 out of 96 transients), then, it is 

considered allocated to FF1 consensus clusters with low confidence levels (dots). Table 11 

summarizes the average Silhouette, C-index and DB values obtained by the three alternative 

approaches compared with the proposed approach, along with their computational efforts. One can 

notice that: 

• the overall values of the Silhouette (i.e., -0.0230), C-index (i.e., 0.5735) and DB (i.e., 

3.2235) of the updated FF1 consensus clusters obtained at 𝐾∗ by the alternative approach 3 

ensure that the quality of the obtained clusters, in terms of separation and compactness, is 

much worse than for the proposed approach (Figure 11), as shown by the very small 

Silhouette value and very large C-index and DB values, 

• the application of this approach to the available dataset requires a computational effort (i.e., 

4.7 minutes) almost similar to the reconciliation framework proposed (i.e., 5 minutes). 
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Silhouette C-index DB 

Computational 

Efforts (min) 

Alternative approach 1 0.8258 0.0194 0.3262 12.6 

Alternative approach 2 0.2594 0.1214 1.7601 4.5 

Alternative approach 3 -0.0230 0.5735 3.2235
 

4.7 

Proposed approach 0.8227 0.0304 0.6162 5 

Table 11: Average Silhouette, C-index and DB values of the updated FF1 consensus clusters obtained by the 

three alternative approaches compared with the proposed approach, along with their computational efforts. 

As last remark, one might be wondering whether the distributive characteristics of the available 

training dataset 𝑋̿𝐹𝐹1, i.e., proportions of number of transients in the available clusters, have an 

impact on the optimum 𝐾 value and the quality of the final updated consensus clusters. This is 

investigated and its detailed analysis is reported in Appendix E, for completeness: the obtained 

results show that the 𝑋̿𝐹𝐹1 is a low imbalanced dataset (i.e., the number of transients in the majority 

clusters is non-significantly larger than that in the minority clusters) and it has no influence on the 

identified optimum 𝐾 value, 𝐾∗, and correspondingly, on the final conclusions drawn. 

5. Conclusions and perspectives 

In this paper, we have proposed a framework for incrementally learning the different clusterings 

independently obtained for NPP individual turbines of a fleet. The basic idea is to reconciliate the 

most similar clusters in the different NPP turbines clusterings and include all the other dissimilar 

ones, for avoid catastrophic forgetting. In the final clustering, one can distinguish, among the 

groups, anomalous behaviors of the turbines and relate them to specific root causes, such that for a 

new coming NPP turbine, one can estimate and predict its future evolution, reducing the time for 

fault detection and diagnosis and facilitating the decision on how to intervene to avoid the 

consequences of the fault.  

The proposed framework has been applied to 149 and 116 shut-down transients of two NPPs 

turbines, respectively. Three alternative approaches for learning data have also been applied and 

their results have been compared to those obtained by the proposed framework. 

The comparison of the results obtained show that the proposed framework: 1) is capable of 

incrementally learning the behaviors of the turbines fleet under varying environmental and 

operational conditions, 2) requires less computational efforts by avoiding to retrain each time on all 

shut-down transients that have been collected thus far from the turbines fleet. The performance of 
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the final obtained consensus clusters, quantified in terms of clusters separation and compactness, is 

satisfactory. 

Further improvement in the clustering procedure and automation of the identification of the best 

matching cluster will be object of future work. 

Acknowledgements 

The participation of Sameer Al-Dahidi and Piero Baraldi to this research is supported by the 

European Union Project INNovation through Human Factors in risk analysis and management 

(INNHF, www.innhf.eu) funded by the 7th framework program FP7-PEOPLE-2011-Initial Training 

Network: Marie-Curie Action. The participation of Enrico Zio to this research is partially supported 

by the China NSFC under grant number 71231001. 

The authors would like to thank all the reviewers for their valuable comments to improve the 

quality of this paper. 

References 

[1] S. Katipamula, M. Brambley, Review Article: Methods for Fault Detection, Diagnostics, and 

Prognostics for Building Systems—A Review, Part I, HVAC&R Res. 11 (2005) 3–25. 

doi:10.1080/10789669.2005.10391123. 

[2] V. Agarwal, N.J. Lybeck, R. Bickford, R. Rusaw, Development of asset fault signatures for 

Prognostic and Health Management in the nuclear industry, in: 2014 Int. Conf. Progn. Heal. Manag., 

IEEE, 2014: pp. 1–7. doi:10.1109/ICPHM.2014.7036366. 

[3] G. Medina-Oliva, A. Voisin, M. Monnin, J.-B. Leger, Predictive diagnosis based on a fleet-wide 

ontology approach, Knowledge-Based Syst. 68 (2014) 40–57. doi:10.1016/j.knosys.2013.12.020. 

[4] A.K.S. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics 

implementing condition-based maintenance, Mech. Syst. Signal Process. 20 (2006) 1483–1510. 

doi:10.1016/j.ymssp.2005.09.012. 

[5] C. Patrick, R., Smith, M.J., Byington, C.S., Vachtsevanos, G.J., Tom, K., & Ly, Integrated software 

platform for fleet data analysis, enhanced diagnostics, and safe transition to prognostics for helicopter 

component CBM, in: Proc. Annu. Conf. Progn. Heal. Manag. Soc., n.d.: pp. 1–15. 

[6] Y. Lei, Z. He, Y. Zi, A new approach to intelligent fault diagnosis of rotating machinery, Expert Syst. 

Appl. 35 (2008) 1593–1600. doi:10.1016/j.eswa.2007.08.072. 

[7] L. Batista, B. Badri, R. Sabourin, M. Thomas, A classifier fusion system for bearing fault diagnosis, 

Expert Syst. Appl. 40 (2013) 6788–6797. doi:10.1016/j.eswa.2013.06.033. 

[8] V. Agarwal, N.J. Lybeck, B.T. Pham, R. Rusaw, R. Bickford, Online Monitoring of Plant Assets in 

the Nuclear Industry, Annu. Conf. PHM Soc. (2013) 1–12. 

[9] Z. Su, B. Tang, L. Deng, Z. Liu, Fault diagnosis method using supervised extended local tangent 

space alignment for dimension reduction, Measurement. 62 (2015) 1–14. 

doi:10.1016/j.measurement.2014.11.003. 

[10] International Atomic Energy Agency (IAEA), On line Monitoring for improving Performance of 

Nuclear power plants, Part 2: Process and component condition monitoring and diagnostics, IAEA 

Nucl. Energy Ser. (2013). 

[11] J. Ma, J. Jiang, Applications of fault detection and diagnosis methods in nuclear power plants: A 

http://www.innhf.eu/
http://www.innhf.eu/


33 

 

review, Prog. Nucl. Energy. 55 (2011) 255–266. 

[12] R. Isermann, Process fault detection based on modeling and estimation methods-A survey, 

Automatica. 20 (1984) 387–404. doi:10.1016/0005-1098(84)90098-0. 

[13] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection 

and diagnosis part I: Quantitative model-based methods, Comput. Chem. Eng. 27 (2003) 293–311. 

doi:10.1016/S0098-1354(02)00160-6. 

[14] Y. Ben-Haim, Malfunction isolation in linear stochastic systems: Application to nuclear power plants, 

Nucl. Sci. Eng. 85 (1983) 156–166. 

[15] E. Turkcan, O. Ciftcioglu, T.H.J.J. van der Hagen, Surveillance and fault diagnosis for power plants 

in the Netherlands: operational experience, in: Proc. IAEA Tech. Comm. Meet. Diagnostic Syst. 

Nucl. Power Plants, Istanbul, Turkey, 1998: pp. 53–70. 

[16] R.J. Patton, J. Chen, Observer-based fault detection and isolation: Robustness and applications, 

Control Eng. Pract. 5 (1997). doi:10.1016/S0967-0661(97)00049-X. 

[17] J. Reifman, Survey of artificial intelligence methods for detection and identification of component 

faults in nuclear power plants, Nucl. Technol. 119 (1997) 76–97. 

[18] H.M. Hashemian, On-line monitoring applications in nuclear power plants, Prog. Nucl. Energy. 53 

(2011) 167–181. doi:10.1016/j.pnucene.2010.08.003. 

[19] V. Venkatasubramanian, A review of process fault detection and diagnosis: Part III: Process history 

based methods, Comput. Chem. Eng. 27 (2003) 293–311. doi:10.1016/S0098-1354(02)00162-X. 

[20] G. Zhou, L. Yang, Advance in study of intelligent diagnostic method for nuclear power plant, 

Yuanzineng Kexue Jishu/Atomic Energy Sci. Technol. 42 (2008) 92–99. 

[21] M. Todd, S.D.J. McArthur, J.R. McDonald, S.J. Shaw, A semiautomatic approach to deriving turbine 

generator diagnostic knowledge, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37 (2007) 979–

992. doi:10.1109/TSMCC.2007.900645. 

[22] M.J. Embrechts, S. Benedek, Hybrid identification of nuclear power plant transients with artificial 

neural networks, IEEE Trans. Ind. Electron. 51 (2004) 1438–1443. doi:10.1109/TIE.2004.824874. 

[23] M. Monnin, B. Abichou, A. Voisin, C. Mozzati, Fleet historical cases for predictive maintenance, in: 

Int. Conf. Surveill. 6, Compiègne 6, 2010: pp. 25–26. 

[24] T. Wang, J. Yu, D. Siegel, J. Lee, A similarity-based prognostics approach for Remaining Useful Life 

estimation of engineered systems, in: PHM. Int. Conf., 2008: pp. 1–6. 

[25] E. Olsson, P. Funk, M. Bengtsson, Fault Diagnosis of Industrial Robots using Acoustic Signals and 

Case-Based Reasoning, (2004) 686–701. 

[26] A. Reymonet, J. Thomas, N. Aussenac-Gilles, Ontology based information retrieval: An application 

to automotive diagnosis, Proc. Int. Work. Princ. Diagnosis. (2009) 9–14. 

[27] P. Umiliacchi, D. Lane, F. Romano, Predictive Maintenance of railway subsystems using an 

Ontology based modelling approach, in: Proc. 9th World Conf. Railw. Res., Lille, France, 2011: pp. 

1–10. 

[28] L. Serir, E. Ramasso, N. Zerhouni, Evidential evolving Gustafson-Kessel algorithm for online data 

streams partitioning using belief function theory, Int. J. Approx. Reason. 53 (2012) 747–768. 

doi:10.1016/j.ijar.2012.01.009. 

[29] L. Serir, E. Ramasso, P. Nectoux, N. Zerhouni, E2GKpro: An evidential evolving multi-modeling 

approach for system behavior prediction with applications, Mech. Syst. Signal Process. 37 (2013) 

213–228. doi:10.1016/j.ymssp.2012.06.023. 

[30] P. Baraldi, F. Di Maio, M. Rigamonti, E. Zio, R. Seraoui, Unsupervised clustering of vibration 

signals for identifying anomalous conditions in a nuclear turbine, J. Intell. Fuzzy Syst. 28 (2013) 

1723–1731. doi:10.3233/IFS-141459. 

[31] F. Wu, J. Lee, Information Reconstruction Method for Improved Clustering and Diagnosis of Generic 

Gearbox Signals, Int. J. Progn. Heal. Manag. 2 (2011) 1–9. 

[32] S. Al-Dahidi, F. Di Maio, P. Baraldi, E. Zio, R. Seraoui, A Novel Ensemble Clustering for 

Operational Transients Classification with Application to a Nuclear Power Plant Turbine, Int. J. 

Progn. Heal. Manag. 6 (2015) 1–21. 

[33] S. Al-Dahidi, F. Di Maio, P. Baraldi, E. Zio, R. Seraoui, Unsupervised Ensemble Clustering for 

Transients Classification in a Nuclear Power Plant Turbine, in: Saf. Reliab. Methodol. Appl. - Proc. 

ESREL Conf., 2015: pp. 2339–2347. 

[34] P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. 



34 

 

Comput. Appl. Math. 20 (1987) 53–65. doi:10.1016/0377-0427(87)90125-7. 

[35] L. Hubert, J. Schultz, Quadratic assignment as a general data analysis strategy, Br. J. Math. Stat. 

Psychol. 29 (1976) 190–241. doi:10.1111/j.2044-8317.1976.tb00714.x. 

[36] D.L. Davies, D.W. Bouldin, A cluster separation measure., IEEE Trans. Pattern Anal. Mach. Intell. 1 

(1979) 224–227. doi:10.1109/TPAMI.1979.4766909. 

[37] E. Zio, F. di Maio, Fault diagnosis and failure mode estimation by a data-driven fuzzy similarity 

approach, Int. J. Performability Eng. 8 (2012) 49–65. 

[38] A. Joentgen, L. Mikenina, R. Weber, H.-J. Zimmermann, Dynamic fuzzy data analysis based on 

similarity between functions, Fuzzy Sets Syst. 105 (1999) 81–90. doi:10.1016/S0165-0114(98)00337-

6. 

[39] M.G. Na, S.H. Shin, S.M. Lee, D.W. Jung, S.P. Kim, J.H. Jeong, B.C. Lee, Prediction of major 

transient scenarios for severe accidents of nuclear power plants, IEEE Trans. Nucl. Sci. 51 (2004) 

313–321. doi:10.1109/TNS.2004.825090. 

[40] R. Östermark, A fuzzy vector valued KNN-algorithm for automatic outlier detection, Appl. Soft 

Comput. J. 9 (2009) 1263–1272. doi:10.1016/j.asoc.2009.03.009. 

[41] H.L. Chen, C.C. Huang, X.G. Yu, X. Xu, X. Sun, G. Wang, S.J. Wang, An efficient diagnosis system 

for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach, Expert Syst. Appl. 40 

(2013) 263–271. doi:10.1016/j.eswa.2012.07.014. 

[42] J.M. Keller, M.R. Gray, A Fuzzy K-Nearest Neighbor Algorithm, IEEE Trans. Syst. Man Cybern. 

SMC-15 (1985) 580–585. doi:10.1109/TSMC.1985.6313426. 

[43] E. Rendón, I. Abundez, A. Arizmendi, E.M. Quiroz, Internal versus External cluster validation 

indexes, Int. J. Comput. Commun. 5 (2011) 27–34. 

[44] International Atomic Energy Agency (IAEA), Advanced Surveillance, Diagnostics, and Prognostics 

Techniques Used for Health Monitoring of Systems, Structures, and Components in NPPs, Nucl. 

Energy Ser. (2011). 

[45] K. Salahshoor, M. Kordestani, M.S. Khoshro, Fault detection and diagnosis of an industrial steam 

turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference 

system) classifiers, Energy. 35 (2010) 5472–5482. doi:10.1016/j.energy.2010.06.001. 

[46] E. Zio, Prognostics and Health Management of Industrial Equipment, Diagnostics Progn. Eng. Syst. 

Methods Tech. IGI-Global, 2012. (2012) 333–356. doi:10.4018/978-1-4666-2095-7.ch017. 

[47] M.E. Sharp, J.W. Hines, R. Austin, Equipment monitoring via transient methods EPRI technology 

innovation program, in: 7th Int. Top. Meet. Nucl. Plant Instrumentation, Control. Human-Machine 

Interface Technol. 2010, NPIC HMIT 2010, 2010: pp. 1207–1219. 

[48] J.O. Ramsay, B.W. Silverman, Functional Data Analysis, Springer-Verlag, New York, 2005. 

doi:10.1007/b98888. 

[49] J. Ramsay, B.W. Silverman, Applied Functional Data Analysis: Methods and Case Studies, New 

York: Springer, 2002. 

[50] R. Polikar, Ensemble based systems in decision making, Circuits Syst. Mag. IEEE. 6 (2006) 21–45. 

[51] C. Liu, G.F. Wang, Z.M. Li, Incremental learning for online tool condition monitoring using Ellipsoid 

ARTMAP network model, Appl. Soft Comput. 35 (2015) 186–198. doi:10.1016/j.asoc.2015.06.023. 

[52] C.M. Rocco S., E. Zio, A support vector machine integrated system for the classification of operation 

anomalies in nuclear components and systems, Reliab. Eng. Syst. Saf. 92 (2007) 593–600. 

doi:10.1016/j.ress.2006.02.003. 

[53] A. Ng, M.I. Jordan, On generative vs. discriminative classifiers: A comparison of logistic regression 

and naive bayes, Proc. Adv. Neural Inf. Process. 28 (2002) 169–187. doi:10.1007/s11063-008-9088-

7. 

[54] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees, Taylor & 

Francis, 1984. 

[55] Y. Guo, T. Hastie, R. Tibshirani, Regularized linear discriminant analysis and its application in 

microarrays., 2007. doi:10.1093/biostatistics/kxj035. 

[56] T. Hastie, R. Tibshirani, J. Friedman, J. Franklin, The elements of statistical learning: data mining, 

inference and prediction, Math. Intell. 27 (2005) 83–85. doi:10.1007/BF02985802. 

[57] F. Di Maio, P. Secchi, S. Vantini, E. Zio, Fuzzy C-Means Clustering of Signal Functional Principal 

Components for Post-Processing Dynamic Scenarios of a Nuclear Power Plant Digital 

Instrumentation and Control System, Ieee Trans. Reliab. 60 (2011) 415–425. 



35 

 

doi:10.1109/TR.2011.2134230. 

[58] M. Stone, Cross-Validatory Choice and Assessment of Statistical Predictions, J. R. Stat. Soc. 36 

(1974) 111–147. doi:10.2307/2984809. 

[59] V. López, A. Fernández, S. García, V. Palade, F. Herrera, An insight into classification with 

imbalanced data: Empirical results and current trends on using data intrinsic characteristics, Inf. Sci. 

(Ny). 250 (2013) 113–141. doi:10.1016/j.ins.2013.07.007. 

[60] A. Strehl, J. Ghosh, Cluster Ensembles – A Knowledge Reuse Framework for Combining Multiple 

Partitions, J. Mach. Learn. Res. 3 (2002) 583–617. doi:10.1162/153244303321897735. 

[61] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (2007) 395–416. 

doi:10.1007/s11222-007-9033-z. 

[62] M. Su, C. Chou, A modified version of the K-means algorithm with a distance based on cluster 

symmetry, Pattern Anal. Mach. Intell. 23 (2001) 674–680. doi:10.1109/34.927466. 

[63] X.Z. Fern, W. Lin, Cluster ensemble selection, Stat. Anal. Data Min. 1 (2008) 787–797. 

doi:10.1002/sam.10008. 

[64] A.Y. Ng, M.I. Jordan, Y. Weiss, On Spectral Clustering: Analysis and an Algorithm, Nips. 14 (2001) 

849–856. 

[65] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory. 13 (1967) 21–27. 

doi:10.1109/TIT.1967.1053964. 

[66] S. Opricovic, G.H. Tzeng, Compromise solution by MCDM methods: A comparative analysis of 

VIKOR and TOPSIS, Eur. J. Oper. Res. 156 (2004) 445–455. doi:10.1016/S0377-2217(03)00020-1. 

[67] C.-L. Hwang, K. Yoon, Methods for Multiple Attribute Decision Making, Springer, Berlin, 

Heidelberg, 1981. doi:10.1007/978-3-642-48318-9_3. 

[68] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng. 21 (2009) 1263–

1284. doi:10.1109/TKDE.2008.239. 

 

Appendices 

Appendix A: The Unsupervised Ensemble Clustering 

The unsupervised ensemble clustering approach is proposed to 1) handle the missing data in the 

original dataset, and 2) avoid the need of having an “a priori” knowledge of the number of clusters 

𝑀 in the final consensus clustering.  

The flowchart for the method is sketched in Figure 20. The method goes along the following steps: 

Step 1: Adjacency matrix computation. An adjacency binary similarity matrix 𝐴̿, is built by 

aggregating the similarities 𝜇 of the 𝐻 base clusterings [60], where for each 𝑗-th base clustering, the 

similarity 𝜇 = 1, if two data belong to the same cluster, whereas the similarity 𝜇 = 0, if they belong 

to different clusters. 

Step 2: Similarity matrix computation. From the adjacency binary similarity matrix 𝐴̿, the overall 

similarity matrix 𝑆̿ is computed as the entry-wise average of the 𝐻 base clusterings, i.e. 𝑆̿ =

(1 𝐻⁄ )𝐴̿𝐴̿𝑇 [60]. In this way, each entry of the similarity matrix has a value in [0,1], which is 

proportional to how likely a pair of data is, when grouped together. 
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Step 3: Spectral Clustering. Once the overall similarity matrix 𝑆̿ is computed, Spectral Clustering 

(Appendix B) is used to reveal the hidden structure of 𝑆̿. The basic idea of Spectral Clustering is to 

extract the relevant information of the matrix 𝑆̿, by considering the eigenvectors associated to the 

ascended eigenvalues 𝜆1, 𝜆2, … , 𝜆𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
, … , 𝜆𝑁 

of the
 
normalized

 
laplacian matrix 𝐿̿𝑟𝑠 of 𝑆̿, to 

perform dimensionality reduction before clustering in fewer dimensions (see Step 1 in Appendix B) 

[30,61]. The eigenvectors 𝑢̅1, 𝑢̅2, … , 𝑢̅𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
, … , 𝑢̅𝑁  of the eigenvalues 

𝜆1, 𝜆2, … , 𝜆𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
, … , 𝜆𝑁 

are calculated and stored in a matrix 𝑈̿ with a size 𝑁x𝑁 (see Steps 2 and 

4 in Appendix B), where 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = [𝐶𝑚𝑖𝑛, 𝐶𝑚𝑎𝑥] and 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 are the minimum and 

maximum numbers of clusters considered for the final consensus clustering, respectively.  

Step 4: Clustering algorithm. For each candidate number of clusters 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , the reduced matrix 

of 𝑈̿ with a size 𝑁x𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒  is partitioned into 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒  clusters by using a single clustering 

algorithm and the final consensus clustering 𝑃𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

∗  is obtained. In this work, we resort to the 𝐾-

means algorithm, one of the most used clustering methods, to partition 𝐶̿ into 𝐾 = 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 

clusters [62,63]. 

Step 5: Final consensus clustering selection. For each 𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, the obtained consensus clustering 

𝑃𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

∗  is evaluated by computing its Silhouette validity index 𝑆𝑉𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
 [34]. The most 

appropriate consensus clustering 𝑃𝐶∗
∗  is the one for which the Silhouette reaches a maximum, for 

which clusters are well separated and compacted (see also Appendix C). 

 

Figure 20: Flowchart of the ensemble clustering approach. 
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Appendix B: Unsupervised Spectral Clustering 

Spectral clustering technique uses the spectrum (eigenvalues) of the similarity matrix of the data to 

perform dimensionality reduction before clustering in fewer dimensions [30,61]. In this work, the 

similarity matrix 𝑆̿ of size 𝑁x𝑁 is computed by Cluster-based Similarity Partitioning Algorithm 

(CSPA). The Spectral Clustering technique entails four steps [30,61]: 

Step 1: Normalized Laplacian Matrix. Starting from the similarity matrix 𝑆̿, the degree matrix 𝐷̿ is 

calculated, whose entries 𝑑1, 𝑑2, … , 𝑑𝑁 are: 

𝑑𝑖 = ∑ 𝑆𝑖𝑗, 𝑖 = 1,2, … , 𝑁

𝑁

𝑗=1

 (A1) 

Based on 𝐷̿, the normalized Laplacian matrix 𝐿̿𝑟𝑠, is calculated: 

𝐿̿𝑟𝑠 = 𝐷̿−1𝐿̿ = 𝐼 ̿ − 𝐷̿−1𝑆̿ (A2) 

where 𝐿̿ = 𝐷̿-𝑆̿ and 𝐼 ̿is the identity matrix of size [𝑁, 𝑁].  

Step 2: Eigenvalues and eigenvectors of 𝐿̿𝑟𝑠. Given 𝐿̿𝑟𝑠, compute the eigenvectors 𝑢̅1, 𝑢̅2, … , 𝑢̅𝑁. 

The first 𝐶 eigenvalues are such that they are very small whereas 𝜆𝐶+1 is relatively large [64]. 

Step 3: Number of clusters. The number of clusters is set equal to 𝐶, according to the eigengap 

heuristic theory [64]. 

Step 4: Feature extraction. The relevant information on the structure of the matrix 𝑆̿ is obtained by 

considering the eigenvectors 𝑢̅1, 𝑢̅2, … , 𝑢̅𝑁 associated to the 𝐶 smallest eigenvalues of its laplacian 

matrix 𝐿̿𝑟𝑠. The square matrix 𝑆̿ is transformed into a matrix 𝑈̿ of size [𝑁, 𝐶], in which the 𝐶 

columns of 𝑈̿ are the eigenvectors [61]. 

Appendix C: Silhouette validity index 

To evaluate the optimal number of clusters 𝐶∗ among several clusters candidates, Silhouette validity 

index has been adopted. The silhouette value for the 𝑖-th datum, 𝑖 = 1, … , 𝑁, is a measure of how 

similar/dissimilar that datum is to others in its own cluster and to the other clusters, respectively. 

The silhouette value for the 𝑖-th datum 𝑆𝑖  is defined as [34]: 

𝑆𝑖 = (𝑏𝑖 − 𝑎𝑖)/max (𝑎𝑖, 𝑏𝑖)  (A3) 
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where 𝑎𝑖 is the average distance from the 𝑖-th datum to the others in the same cluster, and 𝑏𝑖 is the 

minimum average distance from the 𝑖-th datum to the others in a different cluster, minimized over 

clusters. 

The mean of the silhouette values for the 𝑚-th cluster 𝐶𝑚 is called the cluster mean silhouette and is 

denoted as 𝑆𝑚 (Eq. (A4)): 

𝑆𝑚 =
1

𝑛𝑚
∑ 𝑆𝑖

𝑖∈𝐶𝑚

 (A4) 

where 𝑛𝑚 is total number of data in the 𝑚-th cluster. Finally, the global silhouette index 

𝑆𝑉𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
 is the mean of the mean silhouettes (Eq. (A5)) through all the clusters. 

𝑆𝑉𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 =
1

𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
∑ 𝑆𝑚

𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑚=1

 (A5) 

The silhouette value ranges from -1 to +1. A high silhouette value 𝑆𝑉𝐶∗ indicates that the 𝐶∗ clusters 

of the final consensus clustering are well separated and compacted. 

Appendix D: Sensitivity analysis of the 𝑲 value on the quality of the updated consensus clusters 

Building the FKNN classifier for allocating the new coming EE1 transients to the existing FF1 

consensus clusters requires to optimally set the 𝐾 nearest neighbors value. In fact, neither a too 

small nor a too large value of 𝐾 can be considered as a valuable result from the practical point of 

view of assigning new transients of EE1 to the available FF1 consensus clusters: a small value of 𝐾 

leads to over fitting the data and accordingly to higher variance in the classification task (i.e., 

classifier is less stable), whereas a large value of 𝐾 leads to under fitting the data and accordingly to 

higher bias in the classification task (i.e., classifier is less precise) [65]. Therefore, an optimum 

value of 𝐾 needs to be identified. 

In this analysis, the optimum 𝐾 value, 𝐾∗, is selected among different values of 𝐾, 𝐾𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, that 

span in the interval [𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥], where 𝐾𝑚𝑖𝑛 is the minimum number of nearest neighbors that is 

usually set to 2 and 𝐾𝑚𝑎𝑥 is the maximum number of nearest neighbors that is usually set to the 

square root of the size of the training set 𝑋̿𝐹𝐹1 (i.e., 13), by evaluating quality of the updated FF1 

consensus clusters, in terms of clusters separation and compactness: the optimum 𝐾 value is the 

value at which the Silhouette measure is maximized, while both the C-index and DB measures are 

minimized, which makes the selection process a multi-criteria decision problem.  
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To solve this, we resort to the Technique for Order Preference by Similarity to an Ideal Solution 

(TOPSIS) method [66,67], which is a multiple criteria decision making method whose basic 

principle is that the selected solution should have the shortest distance from the ideal solution and 

the farthest distance from the negative ideal solution. In principle, different criteria can have 

different weights (i.e., importance) when selecting the solution, depending on the objective of the 

study (refer to [66,67], for more details). In this study, since there is no evidence on the relative 

importance of the three selected criteria, i.e., Silhouette measure, C-index and DB value, they have 

been assigned equal weights, leading to an optimum 𝐾 value 𝐾∗ = 7 for which the Silhouette 

measure is -0.0230, C-index is 0.5735 and DB value is 3.2235. 

Appendix E: Investigation of the distributive characteristics of FF1 consensus clusters on the 

quality of the updated clusters 

Another issue needs to be consider for building the FKNN classifier is the distributive 

characteristics of the available training dataset 𝑋̿𝐹𝐹1. In fact, most standard algorithms used for 

classification assume balanced class distributions, i.e., equal proportions of number of instances in 

the available classes. However, in real-world applications, dataset is usually imbalanced, that is the 

number of instances in one class (majority class) is much larger than that in another class (minority 

class), that makes the algorithms biased towards the majority classes and therefore there is a higher 

misclassification rate for the minority class instances [59].  

In the case study under analysis, Figure 21 shows the number of transients in the 𝑃𝐹𝐹1
∗ = 10 

consensus clusters. One can consider that seven clusters (dark shade of color) comprises most of the 

transients (i.e., 124 transients) compare to the remaining clusters (i.e., 24 transients) (light shade of 

color). The imbalance ratio is ~5, i.e., the dataset is low imbalanced. 

 

Figure 21: The distributive characteristics of the available FF1 consensus clusters. 



40 

 

To tackle this issue, the ADAptive SYNthetic (ADASYN) sampling approach [68] has been 

adopted for learning from the imbalanced dataset 𝑋̿𝐹𝐹1. The basic idea of ADASYN is to balance 

the data sizes in majority and minority classes by generating more synthetic data for minority class 

instances in the vicinity of the boundary between the two classes (refer to [68] for more details). 

The updated training dataset 𝑋̿∗
𝐹𝐹1 will be used for training the FKNN classifier. 

In this regard, the sensitivity analysis of Appendix D for the selection of the optimum 𝐾 value is 

then repeated considering the updated training dataset 𝑋̿∗
𝐹𝐹1. For each 𝐾 candidate, the quality of 

the updated FF1 consensus clusters is calculated, in terms of clusters separation and compactness. 

The optimum 𝐾 values is found to be at 𝐾∗ = 7 by resorting to the TPOSIS method for which the 

Silhouette measure is 0.0659, C-index is 0.4687 and DB measure is 3.0367.  

One can notice that the optimum 𝐾 value is still the same as already found when the original 

training dataset 𝑋̿𝐹𝐹1 is used, and the goodness of the final clusters is slightly enhanced, but still 

comparable to the quality of the final clusters found by the proposed approach (Table 7 and Figure 

11). This can be justified by the fact that the imbalanced ratio of the original training dataset is low 

(i.e., 1:5). 

 


