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Abstract ⎯ The k-out-of-n system model is widely applied for the reliability evaluation of many 

technical systems. Multi-state system modelling is also widely used for representing real systems, 

whose components can have different levels of performance. For these researches, recently multi-

state k-out-of-n systems have been comprehensively studied. In these studies, it is usually 

assumed that the system has a single task function to complete in a given environment. Moreover, 

the system or component performance is characterised by one measure, for example “electric 

power” in generation systems or “flow-rate” in transmission systems. However, this can be a 

simplification for some real-life engineering systems. For example, an intertwined district heating 

and electricity system consists of combined heat and power generating units, which can produce 

both electricity and heat. In this paper, definitions of multi-performance weighted multi-state 

components are provided and two generalized multi-performance multi-state K -̄out-of-n system 

models are proposed. Universal generating function approach is developed for the evaluation of 

such systems, with two numerical examples. 
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Acronym  

MSS multi-state system 

FMSS fuzzy multi-state system 

MPMS multi-performance multi-state system 

FUGF fuzzy universal generating function 

GA genetic algorithms  
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CHP combined heat and power 

UGF  universal generating function 

Nomenclature 

M   the highest performance state of the component or system 

 V  the number of performances of the component and of the system 

v

iW  performance variable v of component i  

iW  performance variable vector of component i represented as ( )1, , , ,v V

i i iW W W  

,

v

i jw  the weight of performance variable v of component i in state j 

,i jw  the performance vector of component i in state j represented as ( )1

, , ,, , , ,v V

i j i j i jw w w  

iw  V by 1M + dimensional array, which represents the set of weights of component i 

v

sysW  total weight of all components to a certain performance v 

,i jp  probability that component i is in state j 

n  number of components in MSS 

jk  minimum weight requirement to be in system state j 

jk  set of minimum weight requirements to be in system state j  

  system structure function  

( )iu z  universal generating function of component i 

( )U z  universal generating function of system  

Ω  composition operator of universal generating functions 

X largest number of possible combination of the components’ states 

 

1. Introduction 

In recent years, multi-state system (MSS) models have been widely used for reliability modelling 

of real technical systems that can perform their tasks with various performance levels [1]. A MSS 

is typically made of multi-state components, each of which has a finite number of states, 

corresponding to the different levels of performance that can be achieved. Failures or 
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performance degradation of individual component do not necessarily lead to system-wide failure, 

but to reduced system performance. The basic concepts of MSS reliability were introduced in [1] 

[2] and a comprehensive summary of this field can be found in [3]. For some MSS, besides that 

each component must satisfy its individual requirement, the surplus performance can be shared 

with other components [4]. Reference 4 proposed a MSS with two performance sharing groups 

and the developed method can also be applied to the cases of more groups, which can be applied 

to many real life engineering systems. In some recent researches, fuzzy set theory has been 

applied to MSS modelling and corresponding reliability evaluation for overcoming the 

“dimension damnation” and data inaccuracy problems. General definitions of fuzzy multi-state 

system (FMSS) were proposed in [5] and recent advancement of MSS was summarized in [6]. 

Corresponding fuzzy universal generating function technique (FUGF) was developed for 

evaluating reliability of FMSS [7]. In [7], fuzzy set theory has been introduced for representing 

uncertainties of performances and corresponding probabilities and the fuzzy universal generating 

function has been developed for evaluating reliabilities of such multi-state systems. The 

uncertainties of component state probabilities have been modelled by transferable belief based on 

the Dempster–Shafer theory and reliabilities of multi-state systems have been evaluated 

correspondingly [26]. Reference [27] has studied the propagation mechanism of estimation 

uncertainties of component probabilities, which also has evaluated reliability of weighted k-out-

of-n systems with multi-state component. Reference 8 utilized genetic algorithms (GA) for 

solving general optimal redundancy allocation of MSS.   

The k-out-of-n system structure is a very important and popular type of redundant system, which 

finds wide applications in the reliability evaluation of many technical systems[9].The k-out-of-n 

system can be made of multi-state components[2].  A generalized multi-state k-out-of-n: G 

system and the corresponding reliability evaluation algorithm were developed in[10]. In a multi-

state k-out-of-n system, the system is in state j or above if at least k components are in state j or 

above. A multi-state k-out-of-n system model is proposed in [11] for satisfying practical 

engineering systems, which allows different requirements on the number of components for 

different state levels. In [12],  multi-state weighted k-out-of-n system models were further 

developed, where each component contributes to system performance with a weight that 

represents the performance of the component. Modelling and corresponding reliability evaluation 

of multi-state k-out-of-n system was summarized in [13, 14]. The lifetimes of two different multi-
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state k-out-of-n system models were studied in [15]. In these previous researches, it is usually 

assumed that the MSS has a single task function to complete in a given environment. System 

performance or component performance is characterised by a single performance variable, e.g. 

transmission rate throughput in computer and communication systems [16], electric power in 

electricity distribution systems [17] and flow rate in transportation systems [18]. In reality, there 

are many systems whose performance cannot be adequately described by a single variable. For 

example, a range of performance indicators were introduced in [19] to describe oil and gas 

production and transportation systems, including “production availability”, “production 

regularity”, “quantity availability” and others, and eventually simplified to a single variable: 

“throughput availability”.  Likewise, an intertwined district heating and electricity system 

consisting of combined heat and power generating units (CHP) would need to consider two 

performance variables of electric power and heating power. Then, multi-performance MSS 

modelling must be introduced to describe options with modelling performance measures.  

Though reference [4] considered a MSS with two performance sharing groups, the performance 

variable is still restricted as a single one, e.g. capacity of generating system.   Multi-state vector-

k-out-of-n models have recently been developed to combine component and performance-based 

models into a single framework [20]. This allows evaluating the reliability of a system with 

multiple consumers, each one possibly utilizing different resources (electricity, oil, etc) to satisfy 

requirements. The two models given in [20] consider the system state j as the number of 

consumers being satisfied from a multiple line flow transmission system or multiple resource 

consumption. This begins to address the need to consider a number of performance variables 

when assessing system reliabilities.  

The proposed reliability models in [20] take the perspective of “consumption” rather than of 

“production”, the component of “production” only having a single task function providing a 

single resource (e.g. electricity).  However there are several “production” components or systems 

with multiple “production” tasks. For example, combined heat and power systems known as 

“cogeneration” consisting of several CHP units can produce both electricity and useful heat to 

their customers in a single, integrated system. In recent years, combined heat and power systems 

have been widely used because of their high energy efficiency and environment friendly 

technologies. Combined heat and power systems are extremely flexible and are used in a 
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spectrum of industries.  Moreover the various “production” tasks of the component or system can 

be correlated, e.g. the produced electric power and thermal power of a CHP unit can be highly 

interdependent. The system operator needs a tool for evaluating reliabilities of such kind of 

systems for maintaining secure system operation. However the reliability characteristics of such 

components and systems, called as multi-performance multi-state systems (MPMS) have not 

been comprehensively studied yet. 

In this paper, the basic definitions of MPMSs characterised by multiple performance variables, 

are introduced. Generalized multi-performance weighted multi-state K -̄out-of-n system models 

and reliability evaluation algorithms are also introduced. The benefits are that more detailed 

information of components and systems can be considered in the evaluations of real-life 

engineering systems.   

The paper is structured as follows. Section II introduces multi-performance components based on 

two definitions. Section III presents multi-performance systems, which are analysed from a 

multi-performance perspective and from a weighted-sum perspective that translates the multi-

performance system to a single-performance one. The universal generating function (UGF) 

techniques for evaluating multi-performance systems are defined and presented with numerical 

examples in section IV. Concluding remarks are given in section V. 

2. Definitions and Concepts of Multi-Performance Multi-State Components 

In a multi-performance context, a component may have multiple functions to complete its 

different tasks in a given system environment, which are characterised by various performance 

variables.  

The formal definition of Model I of the multi-performance multi-state component is given below.   
  

Definition I: multi-performance multi-state strong-monotonic-increasing components 

Component i has V performance variables represented by the vector 
iW , where 

( )1, , , ,v V

i i i iW W W W= and 1 v V  , respectively. It also has M+1 states, such that 

0 j M   , and where 0j =  is the complete failure state and j M=  is the best performing state. 
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Each v

iW in state j takes a value ,

v

i jw , corresponding to a weight. The “weight” here means a 

component’s contribution to a certain performance.   

For a strong-monotonic-increasing component, ,

v

i jw  corresponding to each performance variable 

v

iW  in state j must be not less than the value at a lower state , so that: 

 , , 1, , 1v v

i j i jw w i j M−  =   (1) 

The performance of component i in state j can be represented by the vector ,i jw , where

( )1

, , , ,, , , ,v V

i j i j i j i jw w w w= . 

All states of component i can be represented by the following matrix:    

 

1 2

,0 ,0 ,0

1 2

,1 ,1 ,1

1 2

, , ,

ˆ

V

i i i

V

i i i

i

V

i M i M i M

w w w

w w w
W

w w w

 
 
 =
 
  
 

  (2) 

Component i is in state j or above iff 
, ,v v

i i jW w v  . 

The following example illustrates this definition. 

Example 1: A combined heat and power (CHP) generating unit e.g can produce both electric 

power and thermal power. A typical example is a GPC-180D gas unit with a nominal generating 

capacity of 17MW and 25 MW electric power and thermal power, respectively.   Since thermal 

power is a by-product of electric power, the production of both is highly interdependent. The 

CHP unit i has three states, summarized in Table 1. 

Table 1 - Performance parameters of component i 

j  0 1 2 

1

.i jw  0 10 17 

2

.i jw  0 15 25 
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The performance matrix of the CHP generating unit can be as follows:  

 

0 0

ˆ 10 15

17 25

iW

 
 

=
 
 
 

   

It is important to note that the units of each performance variable do not have to be the same. For 

example, power (W) and energy (Wh) in the case of an energy storage component, or volumetric 

flow rate (m3/s) and temperature (°C) in the case of a hot water component. For the CHP 

generating unit, however, we consider both 
1

.i jw  and 
2

.i jw  to be MW. This means that, in the 

highest component state 2j = , the CHP produces 17MW electric power and 25MW thermal 

power. All weights increase with the increasing state number, which confirms that the unit is a 

multi-performance multi-state strongly-increasing monotonic component.  

Definition I of the multi-performance multi-state component (MPMS) is strictly strongly-

increasing: the weight corresponding to each performance variable is non-decreasing with the 

increase of state number. However, there may exist some realistic situations in which the 

component cannot be described by definition I. For example, a CHP unit may have a very high 

performance of electric power but a lower performance of thermal power in a specific state. It is 

also possible to evaluate the overall performance of a component by utilizing a weighted-sum 

conversion of various performance variables.  The importance of the component performance 

variable can be scaled by a weighting-multiplier. Therefore in the Model II of the multi-

performance multi-state component, the strongly-increasing monotonic characteristic for each 

performance variable is relaxed. The formal definition of Model II of the MPMS is given below.  

Definition II: multi-performance multi-state monotonic-increasing components with 

weighted-sum conversion 

Component i has V performance variables represented by the vector 1, , , ,v V

i i iW W W , where 

1 v V  . It also has M+1 states, such that 0 j M   , and where 0j =  is the complete failure 

state and j M=  is the best performing state. Each performance variable 
v

iW in state j takes a 

value ,

v

i jw , which corresponds to a weight. Each component performance variable ,

v

i jw  has a 
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weighting-multiplier vc , which scales its importance. A weighted sum of all performance 

variables for the component in state j can be evaluated as:  

 
1 1 2 2

, , , ,  V V

i j i j i j i jW c w c w c w i= + + +    (3) 

For a monotonic-increasing component with weighted-sum conversion, the weighted sum v

iW  in 

state j must be not less than the value at a lower state, so that: 

       , , 1, , 1i j i jW j MiW −  =              (4) 

3. Definitions and Concepts of Multi-Performance Multi-State Weighted K -̄out-of-n 

Systems 

In this section, key definitions and concepts of multi-performance multi-state weighted K -̄out-

of-n systems (MPMS weighted k-out-of-n systems) are introduced. A MPMS weighted K -̄out-

of-n system can consist of several multi-performance multi-state components for completing its 

different tasks. The first definition of MPMS weighted K -̄out-of-n systems is basic, which 

corresponds to the model of multi-performance multi-state strongly-increasing monotonic 

components.  The formal definition of the basic MPMS weighted K -̄out-of-n system (Model I) is 

provided below. 

Definition III: basic MPMS weighted K -̄out-of-n systems 

Consider a system consisting of n multi-performance multi-state components. Each component 

and system may be in M+1 states, such that 0 j M   and where 0j =  is the complete failure 

state and j M=  is the best performing state. Component i (1 i n  ) in state j provides multiple 

performance contributions to the system, whose values are represented by the vector 

( )1

, , ,, , , ,v V

i j i j i jw w w . ,

v

i jw  represents the weight of performance variable v of component i in 

state j. The “weight” here indicates a component’s contribution in a state to a certain performance 

of the system.    

 Let  be the system structure function representing the system state and ( )1 , , , ,v V

sys sys sysW W W be 

the system weight vector, where 
v

sysW represents the total weight of all components to a certain 
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performance v. Therefore ( )1 1

1 1 1

, , , , , , , ,
n n n

v V v V

sys sys sys i i i

i i i

W W W W W W
= = =

 
=  
 
    . The system is in 

state j or above if the system weight vector is greater than or equal to a pre-defined value set 

( )1 2, , , V

j j j jk k k k= . When comparing two sets, each element is compared to the corresponding 

element with the same index, such that: if  
v v

sys jW k  , v . Then we have:  

  ( ) ( ) ( ) 1 1 2 2

1 1 2 2

1 1 1

Pr Pr

                Pr

V V

sys j sys j sys j

n n n
V V

i j i j i j

i i i

j W k W k W k

W k W k W k



= = =

 

     
      

    

 =   

 
=   


 
 
  

(5) 

where   represents AND logic.    

Equation (5) indicates that the system is in state j or above if each element in the system weight 

vector representing the total weight of all components to a certain performance is greater than or 

equal to the corresponding element in the pre-defined set.  

Example 2: An intertwined district electricity and heating system provides energy to a load for 

consuming both electric and thermal power. The system consists of three CHP generating units as 

shown in Fig.1, which are one GPC-180D gas unit and two GPC-70D gas CHP units. The GPC-

180D gas unit has a nominal generating capacity of 17MW and 25 MW electric power and 

thermal power, respectively. The GPC-70D gas unit has a nominal generating capacity of 6.5 

MW and 10 MW electric power and thermal power, respectively. Obviously one GPC-180D gas 

unit has higher contribution than a GPC-70D gas unit, which indicates it has a higher “weight”.  

Every generating unit has three possible states: 0, 1, 2. The weight distribution of three units are 

shown in Table 2. As shown in Table 2, all weights of both performances increase with the 

increasing state number, which indicates that each unit is a multi-performance multi-state 

strongly-increasing monotonic component. The system may also be in three different states: 0, 1, 

and 2. In order to meet the electric power and heating consumption of the load, a range of 

requirements jk , should be met. When the total weights of both electric power and thermal 

power are greater than or equal to 30MW and 45MW, respectively, the system is considered to be 

in state 2; otherwise but greater than or equal to 16MW and 25MW, respectively, in state 1; 
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Otherwise, in state 0.  Based on these descriptions, the system can be considered to be a basic 

MPMS weighted k-out-of-n system with the following parameters: 

3,  2,  =2n M V= = , ( ) ( ) ( )0,0 , 16,25 , 30,45jk =  for 0,1,2j =  respectively.  

Based on Definition III, we can describe this model as follows: The system weight vector can be 

represented as ( )
3 3

1 2 1 2

1 1

, ,sys sys i i

i i

W W W W
= =

 
=  
 
   . Suppose that the three CHP generating units are 

both in state 2.  The system performance vector can be evaluated as 

( ) ( ) ( )1 2, 17 6.5 6.5,25 10 10 30,45sys sysW W = + + + + =  and the system is also in state 2. If units 2 and 

3 are still in state 2 and the state of unit 1 decreases from 2 to 1, then the system performance 

vector can be evaluated as ( ) ( ) ( )1 2, 10 6.5 6.5,15 10 10 23,35sys sysW W = + + + + =  and the state of the 

system decreases from 2 to 1.  

G1 G2 G3

 

Figure 1.  Single line diagram of a power system with three CHP units 

Table 2 - Performance parameters of units and minimum system requirement 

 

 

j  0 1 2 

( )1 2

1, 1,,j jw w  0,0 10,15 17,25 

( )1 2

2, 2,,j jw w  0,0 3,5 6.5,10 

( )1 2

3, 3,,j jw w  0,0 3,5 6.5,10 

jk  0,0 16,25 30,45 
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The above definition of the basic MPMS k-out-of-n system (Model I) is strong: if just one 

element in the system performance vector is lower than the corresponding element in the pre-

defined set for state j, the system state will be below j. In the Model II of the MPMS, this 

definition is relaxed by utilizing the weighted-sum conversion.   

Definition IV: MPMS K -̄out-of-n systems with weighted-sum conversion  

Consider a system consisting of n MPMS components. Each component and system may be in 

M+1 states, such that 0 j M   and where 0j =  is the complete failure state and j M=  is the 

best performing state. Component i (1 i n  ) in state j has multiple performance contributions to 

the system, whose values are represented by the vector ( )1

, , ,, , , ,v V

i j i j i jw w w .  ,

v

i jw  represents the 

weight of performance variable v of component i in state j. In the proposed model, a pre-step of 

weighted-sum conversion is applied on each component as described in the previous section. A 

weighted sum of performance variables for the component can be evaluated by equation (3).  

Following this conversion, each multi-performance multi-state component resembles a traditional 

single-performance multi-state component. Let  be the system structure function representing 

the system state and sysW be the weighted system performance, where 
1

n

sys i

i

W W
=

= . The system 

is in state j or above if the weighted system performance is greater than or equal to a pre-defined 

value jk , which is therefore identical to previously documented models [12].   

The proposed model can be useful for describing a system with a large number of performance 

variables.  

Example 3: Consider the intertwined district electricity and heating system consisting of three 

CHP generating units as described in Example 2. The weighting-multipliers of electric power and 

heating power variables are 1 0.9c =  and 2 1c = , respectively. A weighted sum of the two 

performance variables for each unit can be evaluated as: 
1 1 2 2

i i iW c W c W= + .  The minimum 

requirement for system states is 0,39,72k =  for 0,1, 2j =  respectively.  

Reliability parameters of units after weighted-sum conversion and minimum system requirement 

are described in Table 3.  
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Table 3 - Performance parameters of units after weighted-sum conversion and system state requirement 

j  0 1 2 

1, jw  0 24 40.3 

2, jw  0 7.7 15.85 

3, jw  0 7.7 15.85 

jk  0 39 72 

 

Suppose that three CHP generating units are both in state 2.  The weighted system performance 

can be evaluated as
1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 3 3( ) ( ) ( ) 40.3 15.85 15.85 72sysW c W c W c W c W c W c W= + + + + + = + + =  

and the system is also in state 2.   

If units 2 and 3 are still in state 2 and the state of unit 1 decreases from 2 to 1, then the system 

performance vector can be evaluated as

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 3 3( ) ( ) ( ) 24 15.85 15.85 55.7sysW c W c W c W c W c W c W= + + + + + = + + =  and the state of the system 

decreases from 2 to 1. 

4. Reliability Evaluation of MPMS K -̄out-of-n systems 

Since the number of MSS states increases rapidly with the increase in the number of its elements, 

a range of analytical methods have been created to reduce computational complexity [9].  

The universal generating function (UGF) was firstly introduced in [28] for reliability evaluation 

of MSS. The performance distribution of MSS can be determined by using the UGF technique. 

The reliability of MSSs with series, parallel, series-parallel and bridge structures were evaluated 

in [24,29,30] by defining different composition operators. The UGF technique is also widely used 

for solving different MSS reliability optimization problems because the reliability index can be 

easily represented and evaluated. 

The further developments and applications of UGF technique were presented in [31,32] and 

detailed description can be found in [22] that summarized achievements in the field.      
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By determining different composition operators, the output performance distributions of MSSs 

with series, parallel and series-parallel structures have been evaluated in [24] and [25]. The UGF 

method has shown to be a very flexible and intuitive tool, especially when deriving probability 

distributions of system performance algebraically. 

4.1 Universal generating function (UGF) method for evaluating MPMS weighted K -̄

out-of-n systems 

In this section, the UGF model for evaluating the reliability of MPMS k-out-of-n systems is 

presented.  

The general form of the UGF for the multi-performance multi-state component i is: 

 
( )1 2

, , ,,
, , ,

, ,

0 0

( )
V

i j i j i ji j

M M
w w ww

i i j i j

j j

u z p z p z
= =

=  =     (6) 

The function (6) is the z-transform of random variable vector iW  of component i, where 

( )1, , , ,v V

i i i iW W W W= and 
v

iW represents performance variable v of component i. Notice that  

v

iW  in state j takes a value ,

v

i jw , corresponding to a weight, which means a component’s 

contribution to a certain performance. 

The function ,

,

0

( ) i j

M
w

i i j

j

u z p z

=

=   represents the probability mass function (p.m.f.) ( ,0iw ,..., ,i jw ,…,

,i Mw ),( ,0ip ,..., ,i jp ,…, ,i Mp ) in the polynomial form, where the exponent 

( )1

, , , ,, , , ,v V

i j i j i j i jw w w w= is the performance vector of component i in state j and ,i jp is the 

probability that component i is in state j , respectively [22]. The p.m.f. is defined as the mapping 

, ,i j i jw p→ .  

The universal generating function ( )iu z is derived from the famous moment generating function 

( )im t  [22, 23]. The moment generating function ( )im t of the discrete random variable vector iW  

with p.m.f. ( ,0iw ,..., ,i jw ,…, ,i Mw ), ( ,0ip ,..., ,i jp ,…, ,i Mp )  is defined for all values of t by:  
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 , ,'

, ,

0 0

( ) ( )i j i j

M M
tw tw

i j ij i j

j j

d
m t e p w e p

dt = =

= =   (7)

 

The function ( )im t  is called as the moment-generating function because all of the moments of 

random variable vector iW  can be obtained by successively differentiating ( )im t [21]. For 

example:  

 , ,'

, ,

0 0

( ) ( )i j i j

M M
tw tw

i j ij i j

j j

d
m t e p w e p

dt = =

= =   (8)

 

Hence 

    
'

,

1

(0) ( )
M

ij i j i

j

m w p E W
=

= =              (9) 

By replacing the function te  by the variable z in Equation (2) we can obtain another function 

related to random variable vector iW  that uniquely determines its p.m.f.:  

,

,

0

( ) ( ) i ji

M
W w

i i j

j

u z E z p z
=

= =              (10) 

Equation (10) is usually called the z-transform of random variable vector iW , which represents 

performance  distribution of component i.  

The UGF of the system is found using the generalised vector composition operator,  [3, 23]: 

 

( ) ( ) ( ) ( )( )

( ) ( )

1, ,

1, 1, , ,1,

1 2

,

1 2

1 2

1, ,

0 0

,? ,? ? ,?

1, ,

0 0

, , ,

, ,

, ,

j n j

j j n n n

V
j jj j

V

n

M M

n

j j

M M
w w w w w w

n

j

w w

j j

j j

j

U z u z u z u z

p p

p z p z

z z
= =

 

= =



=

=

 
 
 

 
= 

  

 


 


 

 

      (11) 

The composition operator performs a multiplication of the coefficients (probabilities) of 

components’ u-functions, as if polynomial factors were being expanded, and, then, sums the 

exponents (performance variables) by index. 
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For a MPMS weighted k-out-of-n system comprised of n multi-performance multi-state 

components with M  states and V performance variables, the parallel composition operation is 

applied as follows: 

 

( ) ( ) ( ) ( )( )

( ) ( )

,1, 1

1

, ,1, 1,

1

1

,1 1 1, 1

1

1, ,1

21 2

1

1

1 2

1, ,

1 1

,? ,?,? ,?

1, ,

1 1

,...,

,

0 0

Ω , , ,

, ,

, ,

n jj n

n

n j n jj j n

n

VV

n

par

i

n n jj n

n

j n

n

ww

par j

par n

M M

n

j j

M M
w

j

par j j

w w

w ww w w

n

j j

M M

i

j

j

j

U z u z u z u z

p p

p z p z

p z

z z



= =



= =

= =



=   

 

=

 
   

 

 
=    

 



= 

 

 

 
( )

( )

, ,

1

1

1 1

1
, ,, ,

1

1

,...,

,

10 0

jn

V
i j i ji i

n n

i i

n

V
sys x sys

i

x

n

i

M M w wn

i j

ij

X

x

j

w w

xP

p z

z

= =

=

 
 
 
 

==

=

=

 
 
 

  
 =  
 
 

=









  (12) 

where Ω par
 is defined as the parallel composition operator, which represents total weight of all 

components equals to the sum of the weights of the individual components [22, 23], X represents 

the largest number of possible combination of the components’ states, xP is the probability of a 

certain combination x of the components’ states, ( )1

, ,, , V

sys x sys xw w  represents the vector of 

performance variables in state x for the system.  

Once the UGF of the MPMS k-out-of-n system is obtained, the system reliability for any given  

vector ( )1 2, , , Vk k k k=  can be evaluated by applying the A  operator: 

 

( ) ( )

( )

1
, ,, ,

1

1 1

, ,

1

( ) ( ), ,

, ,

V
sys x sys x

X
w w

A A x

x

X
V V

x sys x sys x

x

R k U z k P z k

P w k w k

 



=

=

 
= =  

 

= − −





 (13) 

The binary value ( )1 1

, ,, , V V

sys x sys xw k w k − − in the above equation is evaluated as:    
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  
( ) ( )

( ) ( )

1 1

, ,
1 1

, ,
1 1

, ,

1,
, ,

0,

V V

sys x sys x
V V

sys x sys x
V V

sys x sys x

k w k w
w k w k

k w k w


  
− −




= 

 

  (14) 

where   represents AND logic and   represents OR logic. 

4.2 Illustrative example with the UGF method 

Consider a combined heat and power system with one GPC-180D gas unit and two GPC-70D gas 

CHP units. Every generating unit has three possible states: 0, 1, 2. Reliability parameters and the 

weight distribution of three units are shown in Table 4. As shown in Table 4, the probabilities of 

the GPC-180D gas unit in state 0, 1, 2 are 0.1, 0.1, and 0.8, respectively. The probabilities of the 

GPC-70D gas unit in state 0, 1, 2 are 0.05, 0.05, and 0.9, respectively. There are two cases 

considered corresponding to the basic MPMS weighted K -̄out-of-n system model (Definition III) 

and MPMS K -̄out-of-n systems with weighted-sum conversion model (Definition IV), 

respectively.  

Case 1: The system may also be in three different states: 0, 1, and 2. The units are modelled as 

multi-performance multi-state strong-monotonic-increasing components (Definition I). In order 

to meet the electric power and heating consumption of the load, a range of requirements jk , 

should be met. When the total weights of both electric power and thermal power are greater than 

or equal to 30MW and 45MW, respectively, the system is considered to be in state 2; otherwise 

but greater than or equal to 16MW and 25MW, respectively, in state 1; Otherwise, in state 0.  

Based on these descriptions, the system can be considered to be a basic MPMS weighted k-out-

of-n system with the following parameters: 

3,  2,  =2,n M V= = ( ) ( ) ( )0,0 , 16,25 , 30,45jk =  for 0,1,2j =  respectively 

Table 4 - Performance parameters of units  

 

 

j  0 1 2 

( )1 2

1, 1,,j jw w  0,0 10,15 17,25 

1, jp  0.1 0.1 0.8 
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The UGF for each unit, representing its probability distribution, is defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 2 1 2 1 2
1,2 1,2 1,1 1,1 1,0 1,0

1 2 1 2 1 2
2,2 2,2 2,1 2,1 2,0 2,0

1
3,2

,? ? ? 17,25 10,15 0,0

1 1,2 1,1 1,0

,? ? ? 6.5,10 3,5 0,0

2 2,2 2,1 2,0

,?

3 3,2

0.8 0.1 0.1

0.9 0.05 0.05

w w w w w w

w w w w w w

w

u z p z p z p z z z z

u z p z p z p z z z z

u z p z

=  +  +  =  +  + 

=  +  +  =  +  + 

= 
( ) ( ) ( ) ( ) ( ) ( )

2 1 2 1 2
3,2 3,1 3,1 3,0 3,0,? ? 6.5,10 3,5 0,0

3,1 3,0 0.9 0.05 0.05
w w w w w

p z p z z z z+  +  =  +  + 

    (15) 

Applying the operator Ω  over the UGFs of the units, the probability distribution of the entire 

system can be obtained as: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3

17,25 10,15 0,0 6.5,10 3,5 0,0

6.5,10 3,5 0,0

(30,45)? 0,0)?

Ω , ,

0.8 0.1 0.1 ,0.9 0.05 0.05 ,
Ω

0.9 0.05 0.05

0.6 0.0048 ... 025

U z u z u z u z

z z z z z z

z z z

z z

=

  +  +   +  + 
=  

  +  +  

=  + + 

         (16) 

For the highest system state, where the minimum system requirement is 2 (30,45)k = , the 

probability of the system attaining this system weight is:  

( )( ) ( )( )(30,45)? 0,0)?

1

2 0.00025 30,δ , δ 0.648 ... 45

0.6480

,

X

x x

x

U z z zk

p 
=

=  + +

=



=
           (17) 

For the second system state, where the minimum system requirement is 1 (16,25)k = , the 

probability of the system attaining this system weight is:  

j  0 1 2 

( )1 2

2, 2,,j jw w  0,0 3,5 6.5,10 

2, jp  0.05 0.05 0.9 
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( )( ) ( )( )(30,45)? 0,0)?

1

1 0.00025 16,25δ , δ 0.648 ... ,

0.648? .081

0.

... 0.002 0.0

2

2

899

0

X

x x

x

U z z z

p

k


=

=  + + 



+ +

=

+ +

=

=

           (18) 

For the lowest system state, where the minimum system requirement is 0 (0,0)k = , the probability 

of the system attaining this system weight includes all possible system probabilities: 

( )( ) ( )( )(30,45)? 0,0)

0

 

1

δ , δ 0.648 ... ,

0.648? .081 .

0.000

..0.000

25

3

0,0

1

X

x x

x

U z z zk

p 
=

=

=  + + 

+ +

=

=


         (19) 

The lowest system state is, by definition, equal to 1. The final probabilities for the three system 

states are 0.648, 0.8992 and 1, respectively. 

Case 2: The weighting-multipliers of electric power and heating power variables are 1 0.9c =  and

2 1c = , respectively. The units are modelled as multi-performance multi-state monotonic-

increasing components with weighted-sum conversion (Definition II). 

A weighted sum of the two performance variables for each unit can be evaluated as: 

1 1 2 2

i i iW c W c W= + .  The system may be in three different states: 0, 1, and 2. The minimum 

requirement for system states is 0,38,72k =  for 0,1,2j =  respectively. When the weighted 

system performance is greater than or equal to 72MW, the system is considered to be in state 2; 

otherwise but greater than or equal to 40MW, in state 1; Otherwise, in state 0.  Based on these 

descriptions, the system can be considered to be a MPMS K -̄out-of-n system with weighted-sum 

conversion with the following parameters: 3,  2,  n M= = 0,40,72jk =  for 0,1,2j =  respectively.  

The UGF for each unit, representing its probability distribution, is defined as: 

( )

( ) ( )

40.3 24 0

15.85 7.7 0

2 3

1 0.8 0.1 0.1

0.9 0.05 0.05

u z z z z

u z u z z z z

=  +  + 

= =  +  + 
           (20) 
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Applying the operator Ω  over the UGFs of the units, the probability distribution of the entire 

system can be obtained as: 

( ) ( ) ( ) ( )( )
40.3 24 0 15.85 7.7 0

15.85 7.

1 2 3

7

7

2 0?

0

Ω , ,

0.8 0.1 0.1 ,0.9 0.05 0.05
Ω

0.9 0.05 0.05

0.648 ... 0.0 3

,

00

U z u z u z u z

z z z z z z

z z z

z z

=

  +  +   +  + 
=    +  +  

=  + + 

        (21) 

For the highest system state, where the minimum system requirement is 2 72k = , the probability 

of the system attaining this system weight is:  

( )( ) ( )2

72 0?

1

δ , δ 0.648 ... 0.0003 ,72

0.648
X

x x

x

U z zk z

p 
=

=

=  + + 

 =
          (22) 

For the second system state, where the minimum system requirement is 1 40k = , the probability 

of the system attaining this system weight is:  

( )( ) 72 0?

1δ , δ(0.648 ... 0.000

= 0.9807

3 ,30)U z z zk =  + + 
         (23) 

For the lowest system state, where the minimum system requirement is 0 0k = , the probability of 

the system attaining this system weight includes all possible system probabilities: 

( )( )0

72 0?δ , δ(0.648 ... 0.0003 ,40)

 0.648 ... 0

1

.0

=

003

 

U z zk z=  + + 

= + +       (24) 

 

4.3 Large illustrative example with the UGF method 

A large heat and power system consists of six GPC-180D gas units and four GPC-70D gas CHP 

units. Every generating unit has three possible states: 0, 1, 2. Reliability parameters and the 

weight distribution of these two kinds of units are shown in Tables 3, respectively. There are two 
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cases considered corresponding to the basic weighted K -̄out-of-n system model (Definition III) 

and MPMS K -̄out-of-n systems with weighted-sum conversion model (Definition IV), 

respectively.  

Case 1: The system may be in three different states: 0, 1, and 2. The units are modelled as multi-

performance multi-state strong-monotonic-increasing components (Definition I).  In order to 

meet the electric power and heating consumption of the load, a range of requirements jk , should 

be met. When the total weights of both electric power and thermal power are greater than or 

equal to 128MW and 190MW, respectively, the system is considered to be in state 2; otherwise 

but greater than or equal to 80MW and 120MW, respectively, in state 1; Otherwise, in state 0.  

Based on these descriptions, the system can be considered to be a basic MPMS weighted k-out-

of-n system with the following parameters: 10,  2,  =2n M V= = , ( ) ( ) ( )0,0 , 80,120 , 128,190jk =  

for 0,1,2j =  respectively.  

The UGF for each unit, representing its probability distribution, is defined as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

2 6

7

1

17,25 10,15 0,0

6

8 9

.5,10 3,5

0

0

1

,0

...

        0.8 0.1 0.1

        0.9 0.05 0.05

u z u z u z

z z z

u z u z u z u z

z z z

= = =

=  +  + 

= = =

=  +  + 

        (25) 

Applying the operator Ω  over the UGFs of the units, the probability distribution of the entire 

system can be obtained as: 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

1 2

17,25 10,15 0,0

6.5,10 3,5 0,0

(128,190)? 2 (0,

0

)?

1

0

Ω , ,...,

0.8 0.1 0.1 ,...,
Ω

0.9 0.05 0.05

0.172 ... 6.25 10

U z u z u z u z

z z z

z z z

z z−

=

  +  + 
=  

  +  +  

=  + +  

       (26) 

For the highest system state, where the minimum system requirement is 2 (128,190)k = , the 

probability of the system attaining this system weight is:  
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( )( ) ( )( )(128,190)? 2 (0,0)?

1

2δ , δ 0.172 ... 6.25 10 128,190

0.172

,

X

x x

x

U z zk z

p 

−

=

=  + +  

 ==
     (27) 

For the second system state, where the minimum system requirement is ( )1 80,120k = , the 

probability of the system attaining this system weight is:  

( )( ) ( )( )(128,190)? 2 (0,0)?

1δ , δ 0.172 ... 6. 80,120

= 0

25 1

0

0

. 8

,

9 2

U z z zk −=  + +  
    (28) 

For the lowest system state, where the minimum system requirement is 0 (0,0)k = , the probability 

of the system attaining this system weight includes all possible system probabilities: 

( )( ) ( )( )(128,190)? 2 (0,0)?

12

0δ , δ 0 0,0.172 ... 6.25 10 ,

 0.172+...+6

 

.25 1

= 1

0

U z zk z −

−

=  + +  

=      (29) 

Case 2: The weighting-multipliers of electric power and heating power variables are 1 0.9c =  and

2 1c = , respectively. The units are modelled as multi-performance multi-state monotonic-

increasing components with weighted-sum conversion (Definition II). A weighted sum of the two 

performance variables for each unit can be evaluated as: 
1 1 2 2

i i iW c W c W= + .  The system may be 

in three different states: 0, 1, and 2. The minimum requirement for system states is 

0,150,305k =  for 0,1,2j =  respectively. When the weighted system performance is greater than 

or equal to 305 MW, the system is considered to be in state 2; otherwise but greater than or equal 

to 150MW, in state 1; Otherwise, in state 0.  Based on these descriptions, the system can be 

considered to be a MPMS K -̄out-of-n system with weighted-sum conversion with the following 

parameters: 10,  2,  n M= = 0,150,305jk =  for 0,1,2j =  respectively.  

The UGF for each unit, representing its probability distribution, is defined as: 
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( ) ( ) ( )

( ) ( ) ( ) ( )
( )

2 6

40.3 24 0

7 8 9 10

15.85 7 07

1

,0.

...

        0.8 0.1 0.1

        0.9 0.05 0.05

u z u z u z

z z z

u z u z u z u z

z z z

= = =

=  +  + 

= = =

=  +  + 

        (30) 

Applying the operator Ω  over the UGFs of the units, the probability distribution of the entire 

system can be obtained as: 

( ) ( ) ( ) ( )( )10

40.3 24 0

15.85

1 2

305.2?

7.

2 0?

7 0

Ω , ,...,

0.8 0.1 0.1 ,...,
Ω

0.9 0.05 0.05

0.172 ... 6.25 10

U z u z u z u z

z z z

z z z

z z−

=

  +  + 
=    +  +  

=  + +  

       (31) 

For the highest system state, where the minimum system requirement is 2 305k = , the probability 

of the system attaining this system weight is:  

( )( ) ( )305.2? 2

1

2

0?δ , δ 0.172 ... 6.25 10 ,305

0.172
X

x x

x

U z z z

p

k



−

=

=  + +  

 ==
      (32) 

For the second system state, where the minimum system requirement is 1 150k = , the probability 

of the system attaining this system weight is:  

( )( ) 305.2? 0

1

2 ?δ , δ(0.172 ... 6.25 10

= 0.998

5

4

,1 0)U z k z z−=  + +  
     (33) 

For the lowest system state, where the minimum system requirement is 0 0k = , the probability of 

the system attaining this system weight includes all possible system probabilities: 

( )( ) ( )305.2?

1

0

2 0?

2

δ , δ 0.172 ... 6.25 10 ,0

 0.172+...+6.25 10

= 1

U z zk z −

−

=  + +  

=       (34) 

5. Conclusion 
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This paper has presented an extension of the K -̄out-of-n model, which is relevant to several real-

world systems. By introducing a structure with multiple performance variables, systems can be 

analysed with more details and the variable that is the cause of system failure can be explicitly 

identified. Processing restrictions aside, the model can consider any number of performance 

measures at once, and there exist potentially many more composition operators that can be 

applied to multi-variable weighted K -̄out-of-n systems to account for other structures. Future 

work includes optimization of redundancy structure of multi-performance weighted multi-state 

K -̄out-of-n system satisfying multiple performance requirements of practical engineering 

systems. Some practical engineering systems, e.g. energy systems can be modelled as multi-

performance sharing MSS. Reliability evaluation of MSS considering multi-performance sharing 

can be another direction of future research. Consideration of uncertainty in the reliability 

evaluation of the proposed multi-performance weighted multi-state K -̄out-of-n can also be the 

promising extension of future research work. The uncertainties of multi-performances and 

probabilities can be modelled by fuzzy set theory or Dempster–Shafer theory. The propagation 

mechanism of estimation uncertainties from the component level to the system level and its 

corresponding impact can also be further studied. 
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