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Abstract 

Mathematical numerical models are increasingly employed to simulate system behavior and identify 

sequences of events or configurations of the system’s design and operational parameters that can lead the 

system to extreme conditions (Critical Region, CR). However, when a numerical model is: i) computationally 

expensive, ii) high-dimensional, and iii) complex, these tasks become challenging. 

In this paper, we propose an adaptive framework for efficiently tackling this problem: i) a dimensionality 

reduction technique is employed for identifying the factors and variables that most affect the system 

behavior; ii) a meta-model is sequentially trained to replace the computationally expensive model with a 

computationally cheap one; iii) an adaptive exploration algorithm based on Markov Chain Monte Carlo is 

introduced for exploring the system state space using the meta-model; iv) clustering and other techniques 

for the visualization of high dimensional data (e.g., parallel coordinates plot) are employed to summarize 

the retrieved information. 

The method is employed to explore a power network model involving 20 inputs. The CRs are properly 

identified with a limited computational cost, compared to another exploration technique of literature (i.e., 

Latin Hypercube Sampling). 
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 Introduction 

Unexpected, disruptive events are the real challenge of the residual risk from the operation of an 

engineering system, such as a nuclear power plant, an oil and gas plant, a power grid, etc. For example, 

unexpected events occurring in critical infrastructures, such as power distribution networks, can propagate 

their disrupting consequences to other connected systems and lead to cascading effects with huge 

economical and safety impacts (Kröger & Zio, 2011; Vaiman et al., 2012; Zio, 2016a). However, such 

consequences can be strongly mitigated if those events are - to some extent - known in advance (Pate-

Cornell, 2002; Paté-Cornell, 2012). The importance of knowledge as a means for avoiding surprise and 

unexpected events is testified by the large number of works emerging on the subject in recent years (Terje 

Aven, 2015, 2016a; Terje Aven & Krohn, 2014; Cavalcante, Oriá, Sornette, Ott, & Gauthier, 2013; Sornette, 

2009; Sornette, Maillart, & Kröger, 2013; Turati et al., 2016a; Zio, 2016b). 

Modeling and simulation have long been advocated as ways to explore and understand system behavior. 

Their use has been steadily increasing with the complexity of the systems, which makes experimentation 

economically unsustainable and physically infeasible. Design-Of-the-Experiment (DOE) approaches have 

been proposed to test operating conditions in order to study the corresponding system response with 

respect to different criteria: safety, reliability, resilience, business continuity, etc. (Santner et al., 2003; 

Simpson et al., 2001). Particular interest is in the identification of those factors, parameters and variables 



that can lead the system (actually the model that represents it) to critical conditions (Bier et al., 1999; Zio, 

2016a). 

In this paper, we focus on mathematical models that give an Input/Output (I/O) representation, i.e., � =����, of the system behavior. In this setting, a configuration of input values � is considered critical if the 

output � takes value above a predefined safety threshold, i.e., � = ���� ≥ �
��
�, which represents a 

physical limit beyond which the system is unsafe. For example, if in a nuclear power plant the temperature 

of the fuel cladding exceeds a limit value, the plant state is considered critical. Nevertheless, in practical 

cases the numerical models employed are very complex and the function ��∙� is not explicit, it is a sort of 

black-box function. 

A possible approach to discover the configurations of factors that lead to undesired conditions, i.e. the 

Critical Regions (CRs), is to resort to a large number of model simulations and to a posteriori retrieve 

information regarding the shape and the number of regions (Santner et al., 2003). In this light, a huge 

research effort has been devoted to the selection of the input configurations to evaluate. In particular, 

several DOEs have been proposed with the aims of filling the system state space as uniformly as possible, 

such as Latin Hypercube Sampling (LHS) (Iman, 2008; Michael D McKay et al., 2000), which has a desirable 

projection property, or Sobol’ sequences, which are Quasi Monte Carlo (QMC) sequences minimizing the 

discrepancy (Sobol, 1976), and others (V. C. P. Chen, K.-L. Tsui, R. R. Barton, & M. Meckesheimer, 2006). 

Even if these techniques are designed for filling high-dimensional spaces (Sobol et al., 2011), they are not a 

viable solution when the computational cost of a single model simulation is high and the number of calls to 

the model becomes the bottleneck of the analysis. For this reason, some iterative sampling techniques 

aimed at adaptively guiding the system towards the critical condition have been proposed (Cadini et al., 

2014; J. H. Li et al., 2011; Maljovec, Wang, Pascucci, Bremer, & Mandelli, 2013; Picheny et al., 2010; Turati 

et al., 2016a). Still, there is a need for a general and efficient method capable of exploring models that are: 

i) computationally demanding; ii) high-dimensional; iii) complex, i.e., the CRs can be multiple, disconnected 

and involving different shapes (K H Kernstine, 2013). 

Some approaches have been recently proposed in the nuclear community, which make use of 

sophisticated softwares that combine methodologies for risk assessment with very accurate thermo-

hydraulic codes (Alfonsi et al., 2015; Alfonsi et al., 2016; Izquierdo et al., 2009), to perform the so-called 

Integrated Deterministic Probabilistic Safety Assessment (IDPSA) (Aldemir, 2013; Zio, 2014) or 

Computational Risk Assessment (CRA). We cite, for example, the Integrated Safety Assessment (ISA) (Queral 

et al., 2016) from the Spanish Consejo de Seguridad Nuclear (CSN) and the Risk-Informed Safety Margin 

Characterization (RISMC) from the Idaho National Lab (INL) (Smith et al., 2016). For example, the RISMC 

approach is built on four main steps in order to accurately define the safety margins of a complex system 

(Mandelli, Smith, et al., 2013): 1) sampling in the uncertainty space, 2) simulation of the computational 

expensive model to evaluate the system outputs, 3) analysis of the simulation results, 4) visualization of the 



outcomes (Maljovec, Wang, Pascucci, Bremer, Pernice, et al., 2013) and information retrieval (Maljovec et 

al., 2016; Mandelli, Yilmaz, et al., 2013). 

In this paper, we propose a new method for exploring a computational expensive model and retrieving 

information on the system CRs. The method is based on four main steps for iteratively exploring the system 

state space by exploiting the available I/O observations to guide the exploration towards the regions of 

interest. In short, the first step aims at reducing the dimensionality of the space to be explored by means of 

a Polynomial Chaos Expansion (PCE)-based sensitivity analysis (Ciriello et al., 2013; Sudret, 2008). The 

second step has the objective of reducing the computational cost associated to a simulation by training a 

meta-model, namely, Kriging (Cadini et al., 2014; Kleijnen, 2009). The third step is devoted to deeply 

exploring the state space to identify the CRs by means of a Markov Chain Monte Carlo (MCMC) algorithm 

(Andrieu & Thoms, 2008). Finally, the last step consists in retrieving information regarding the CRs, like the 

cardinality and the shape, through clustering by k-means and techniques for high-dimensional data 

visualization like Parallel Coordinates Plot (PCP) (Inselberg, 2009). 

The main differences between our approach and those proposed in the above mentioned references, 

lie in the initial step for model reduction and in the techniques that are employed in the remaining steps, 

e.g. the sequential training of the Kriging meta-model and the MCMC-based exploration. Demonstration is 

given with regards to a representative, critical infrastructure made by a power network of 10 nodes with 

time-variant demands (Mena et al., 2014). The response of the network is analyzed with respect to different 

failure scenarios characterized by 20 factors, including the failure times and magnitudes. Results are 

compared to those of a LHS-based exploration. 

The rest of the paper is organized as follows: in Section 2, the problem and the main challenges of the 

present work are set; in Section 3, the whole framework is described in detail; in Section 4, some metrics 

for evaluating the performance of an exploration algorithm are proposed; in Section 5, a case study 

concerning a power network is employed to show the effectiveness of the proposed method; finally in 

Section 6, some conclusions and prospective developments are given. 

 Critical Regions Exploration 

Let us assume that a mathematical model � = ���� of the system behavior is available, whose input � ∈�� ⊂ ��, represents a given system operational configuration and whose output � ∈ �� ⊂ � reflects the 

condition/state of the system. We define the conditions where � ≥ �
��
� as “critical” and the 

corresponding configurations of factors, i.e. �� = �� ∈ �� ⊂ ��: � = ���� ≥ �
��
�� as the Critical 

Region (CR). From a mathematical perspective, we are looking for the solution of the inverse problem � =������, with � ≥ �
��
�; however, this is not viable in the majority of the engineering systems where ���� 
is a function embedded in numerical codes which is: i) complex, ii) black-box iii) not invertible. 



A solution is, then, to resort to a DOE for exploring the I/O relation by means of numerical simulations 

and, then, retrieve information concerning the CRs through a post-processing (Santner et al., 2003). 

However, this approach is hard to pursue when: i) the numerical model is computationally demanding, i.e., 

the number of calls to the model can be considered as scarce resource; ii) the input domain is high-

dimensional, i.e., the dimensionality of the space to explore is relatively high (say, more than 10 inputs); iii) 

the model is complex, i.e., the CRs can be multiple, disconnected and involving several shapes (K H 

Kernstine, 2013). 

The present paper addresses the above issues, proposing a self-adaptive algorithm for exploring the 

numerical model and retrieving information regarding the ��. We do not consider eventual probabilistic 

distributions associated to �, focusing instead on its range of values (i.e., on its domain), in order to explore 

all possible configurations in the search for CRs. Hence, hereafter, without loss of generality, we assume 

that all input factors are standardized, e.g., � ∈ �� = �0,1!� (Rosenblatt, 1952); likewise, a standardization 

can be applied to the output �. This helps in designing a general, problem-independent algorithm and in 

removing effects related to the different orders of magnitudes possibly existing among the input factors. 

 Proposed Exploration Framework 

We propose a general framework for exploring the state space of a computational model of an engineering 

system. We firstly introduce the general idea of the framework and, then, we dedicate a specific subsection 

to each one of its four main steps. The driving idea is to iteratively run a (possibly small) number of model 

simulations, to retrieve knowledge from the available simulations and to guide the selection of new 

configurations towards the CRs. In short, the first step aims at identifying the factors that most affect the 

output of the model in order to limit the exploration only to the corresponding subspace (dimensionality 

reduction) resorting to PCE-based sensitivity analysis (Sudret, 2008). The second step aims at training a 

computationally cheap-to-run meta-model that accurately reproduces the response of the real model on 

the reduced space, with a particular attention to its ability to discriminate between the CRs and normal 

conditions, e.g., a Kriging meta-model (Kleijnen, 2009). The third step resorts to the meta-model for deeply 

exploring the reduced state space by means of MCMC, with the objective of visiting and, consequently, 

discovering those configurations of factors leading to critical outputs (Andrieu & Thoms, 2008). Finally, the 

last step employs clustering (e.g., k-means) and graphical representation techniques (e.g. PCP (Inselberg, 

2009)) for retrieving information and describing the CRs found. Fig. 1 reports a flow diagram synthetizing 

the entire procedure, indicating as well the type of model used to run the simulations associated to each 

step. 



 

Fig. 1 Flow diagram of the entire framework. 

 Dimensionality Reduction 

In general terms, dimensionality reduction includes a number of strategies for identifying a lower-

dimensional subspace of variables where it is possible to build a reduced and simplified, yet representative 

and understandable, model of the system behavior (Fodor, 2002; H. Liu & Motoda, 2012). From the point 

of view of the exploration, reducing the dimensionality of the state space to explore allows the definition of 

a more effective DOE. Two main strategies have been proposed in the literature: i) feature selection, which 

aims at selecting a subset of the available variables and parameters input to the model (Guyon & Elisseeff, 

2003), and ii) feature extraction, which aims at identifying a subset of “new” features created by means of 

transformations of the initial ones (Guyon & Elisseeff, 2006). Nevertheless, dimensionality reduction 

methods usually rely on a large set of I/O data examples that are not usually available, when the system 

model is computationally expensive. 

In alternative, sensitivity analysis methods can be employed to achieve the same final objective as 

feature selection, by ranking the factors according to their influence on the output of the model (Borgonovo 

& Plischke, 2016; Saltelli, 2008; Sudret, 2008). In particular, to this aim, global order sensitivity indices are 

more appropriate than local sensitivity indices, because they provide a measure of how the inputs globally 

affect the output of the model, i.e., with respect to different configurations of the input factors. In this 

paper, we resort to the total order sensitivity index "# (Homma & Saltelli, 1996; Sobol, 2001) that is a 

variance-based global sensitivity measure, assessing the expected fraction of the total variance of the 

output � that is due to the variation of a specific input factor $ and to its interactions with the others: 

"#% = &�~(	*+�(	��|�~%	�	-+��� , (1) 

where �. represents the i-th component of the input vector �; �~% represents the rest of the 

components of the vector � and "# ∈ �0,1!. A large value of "#%	 indicates that the i-th factor heavily affects � and, thus, should be kept in the reduced-model; on the contrary, a very low value of "#% indicates that 



the i-th factor does not affect � and, thus, it can be discarded or set to a constant value. Usually, a threshold "
��
� = 1 /⁄  is adopted to discriminate the important factors (Saltelli, 2008). 

In order to limit the computational cost needed for assessing "#, we resort to the PCE method (Sudret, 

2008). In practice, by treating the input factors as stochastic variables described by a uniform distributions, 

the output function � = ���� can be decomposed by means of a PC expansion: 

� = ��1�, … , 1�� = 3 �4565�1�, … , 1��5∈ℕ8
, (2) 

where �49 is the coefficient associated to the multivariate Hilbertian basis 65�∙�, orthonormal with 

respect to the multivariate uniform distribution (� ∈ �� = �0,1!�). Notice that 65�∙� is a multivariate 

Legendre polynomial, where the multi-index 5 = �:�, … , :�� indicates the order of the polynomials 

associated to each component of the vector �. Thanks to the orthonormality of the Hilbertian basis, it can 

be shown that the variance of the output reads: 

;<= = +�����! = + > 3 �4565���5∈ℕ8
? = 3 �45=&�65=���!5∈ℕ8

− �4A= = 3 �45=5∈ℕ8
− �4A= (3) 

where �4A is the coefficient associated to the polynomial of order zero, i.e., that representing the 

expected value of �. Similarly, the total order sensitivity indices can be computed as: 

"#% = ∑ �4C=C∈ℕ(8	;<= , (4) 

where ℕ%� = �C ∈ ℕ�	D. F. G% ≠ 0	� is the subset of all the multi-indices corresponding to multivariate 

Legendre polynomials with non-zero degree associated to the i-th component, i.e., those polynomials that 

include the i-th component (Sudret, 2008). In this way, the numerator represents the contribution of the 

input i and its interactions with the other inputs to the total variance ;<=. Nonetheless, the result in (4) 

requires to compute a countably infinite number of coefficients �I5, thus, in practice, the PCE in (2) is 

truncated to polynomials up to a given order J such that a sufficient approximation of the response function � is guaranteed:  

� = ��1�, … , 1�� ≈ 3 �L565�1�, … , 1��5∈M8,N
, (5) 

where O�,P ⊂ ℕ� is the multi-index subset corresponding to polynomials having maximum order equal 

to J, i.e., O�,P = �5 ∈ ℕ�	D. F. |5| ≤ J	� and �L5 are the estimators of the corresponding coefficients, which 

are on the whole R = S/ + JJ U. Similarly, the total order sensitivity indices can be approximated as:  

"#% ≈ "V#% = ∑ �LC=C∈W(8	∑ �L5=5∈M8,N − �LX=, (6) 



where Y%� ⊂ ℕ%� ∩ O�,P is the multi-index subset corresponding to polynomials having the i-th 

component larger than zero and maximum order equal to J. Thus, in practice, the computational cost for 

estimating "# depends on the computational cost needed to estimate the coefficients �I5, i.e., to approximate 

the function � (Sudret, 2008). 

Regression methods have been shown to be a non-intrusive efficient tool for estimating the coefficient �I5 by resorting to a set of I/O configurations (Sudret, 2008). In order to be trained, a regression model 

needs at least a number of samples [\]^ larger than the number of coefficients R, whose values could be 

obtained by means of QMC and LHS. However, the minimum number R of samples required increases with 

the dimension of the input space / and with the order of the polynomial J, making this approach unfeasible 

when simulations are computationally demanding, involve many inputs and have a non-smooth response 

function. Similar issues are shared also by the so-called Non-Intrusive Spectral Projection (NISP) (Crestaux 

et al., 2009). 

For this reason, an adaptive sparse PCE representation, coupled with a Least Angle Regression (LAR), has 

been devised by (Blatman & Sudret, 2011) and it is here employed to detect the most significant 

polynomials. In practice, the PCE is built by adding, one at the time, the polynomial that most correlate with 

the residuals (i.e., the polynomial that better explains “part of the behavior” of the function � that is not 

yet captured by the polynomials already selected for the expansion), until a sufficient level of accuracy is 

reached. Consequently, only some of the R coefficients have to be estimated, thus limiting the number of 

I/O observations needed for accurately computing the corresponding coefficients. A further reduction in [\]^  can be achieved thanks to a recently proposed optimal DOE (Burnaev et al., 2016). 

Moreover, since the objective of the current step is to identify those inputs that most affect the output, 

it is sufficient that the truncated PCE catches the global and general trend of the response function. Thus, 

in order to further limit the computational cost, the maximum order of the polynomial J can be fixed to a 

relatively low value, being aware that the lower J, the lower the capability of the PCE of reproducing local, 

possibly abrupt changes of the response function. All the analyses involving both the PCE approximation 

and the corresponding computation of the sensitivity indices, are conducted using the UQLab Toolbox for 

Matlab (Marelli & Sudret, 2014). 

Once the important factors are identified, the remaining ones are either removed or fixed to constant 

values; nevertheless, in what follows, in both cases we will refer to the resulting model as “reduced-model”. 

 Meta-modeling 

The main objective of a meta-model is to reproduce the behavior of the real (typically long-running) system 

model with a less expensive computational model. The meta-model is trained by resorting to a typically 

limited number of I/O observations from the real reduced-model; on this basis, it should be capable of 

predicting the output values associated to input configurations that have not been explored yet. Since the 



real model is assumed to be deterministic (i.e., simulations of the same input configuration lead to the same 

output), it is desirable that the meta-model predicts as well the exact output value in correspondence of 

the training configurations (i.e., those known with absolute certainty). In this respect, among the numerous 

methods available in the literature (Jin et al., 2001; Shan & Wang, 2010), we resort to Kriging (Kleijnen, 

2009; Matheron, 1963), i.e., Gaussian process modeling. Actually, Kriging is capable of modeling local 

behaviors of the response function and of diversifying the levels of accuracy of the same model within 

different regions. For example, in our case, we are interested in a more refined model in the proximity of 

the CRs, whereas a rough one is sufficient for normal operating conditions. In practice, this can be obtained 

by concentrating the I/O training observations of the real model in the proximity of the CRs and of their 

limit surfaces. Sequential adaptive training strategies have been recently developed to this aim (Echard et 

al., 2011; Picheny et al., 2010). In what follows, the fundamental concepts of Kriging are recalled, with a 

focus on the adaptive strategy exploited for training the meta-model. 

Kriging is a stochastic interpolation algorithm, which assumes that the model output � = ���� is the 

realization of a Gaussian process indexed by � ∈ �_ ⊂ ��`
 where, in our case, �_ is the domain of validity 

of the meta-model and /a < / is the dimensionality of the reduced-model. In practice, Kriging is a linear 

regression model where the residuals are correlated by means of a Gaussian process, instead of being 

independent: 

� = ���� = [cd���#e, ;=f���g, (7) 

where d���#e represents the mean value, also known as trend, which is a general linear regression 

model (e.g., d��� can involve polynomial terms and it reflects the prior knowledge about the model), ;= is 

the variance of the Gaussian process, and f��� is a zero mean, unit variance stationary Gaussian process 

whose underlying correlation function is represented by ���, �a; i�. The correlation function is 

characterized by the parameters i, which are function-specific and, it depends typically on the distance of 

the two vectors �, �a: the closer they are, the higher their correlation. Due to the Gaussian process 

hypothesis, every set of realizations of the model output can be described by a Gaussian vector, whose 

relation between a single realization ���� and the rest of the set j ∈ �klm(n reads: 

o����j p~[klm(nq� Sod���#ere p ; ;= o 1 st���s��� u pU. (8) 

In detail, r is the information matrix of j where each row represents the regressors associated to the 

corresponding observation ��%� (i.e., r% = dc��%�g, $ = 1,… , [v�%w); e, d��� and ;= are defined as above; 

u is the correlation matrix (i.e., u%x = �c��%�, ��x�; ig, $, y = 1,… ,[v�%w) and s��� is the vector of the 

correlation between � and the other vector, (i.e., s��� = �c�, ��%�; ig, $ = 1,… ,[v�%w). 

Assuming that j =(��, … , �klm(n) is an experimental design with associated information matrix r and 

correlation matrix u, then the prediction of the output �z  for a given configuration � is given by: 



�z���|j, ;{, i~[c|<z ; ;<z=g, (9) 

where 

|<z��� = d���#e + s���#u�}�j − r~�, (10) 

;<z=��� = ;=�1 − s���#u�}s���#� + �d���# − s����u�}r��r�u�}r����d���# − s����u�}r�# (11) 

with the regression coefficients estimated by e� = cr�u�}rg��r#u�}j. 

One of the main advantages of this formulation is that a confidence interval can be associated to each 

prediction �z���. This can be used for assessing the accuracy and precision of the meta-model: the smaller 

the confidence interval, the more precise the model prediction for the corresponding configuration. 

Since in this paper the focus is on the CR, the accuracy of the meta-model should be higher in the 

proximity of the CR. In particular, it is important that the meta-model is capable of discriminating the CR 

from the normal conditions; thus, instead of using an a-priori fixed DOE, a sequential one (where the 

experimental observations are iteratively and adaptively added to increase the accuracy of the meta-model 

around the regions of interest) is preferable. The Adaptive Kriging Monte Carlo Simulation (AK-MCS) (Echard 

et al., 2011) is here employed to this aim. In the AK-MCS, an initial Kriging model is trained with a small set 

of I/O observations, e.g., sampled according to LHS scheme; then, the algorithm proceeds iteratively 

according to the following steps: i) randomly sample a large set of input configurations � =c����, … , ��k8���g, e.g., by means of LHS; ii) evaluate the associated responses using the Kriging meta-

model �z = cj��, … , j�k8��g; iii) check if a convergence criterion has been reached: if so, the meta-model is 

sufficiently accurate; otherwise, iv) select, according to a predefined learning function/criterion, the best 

candidate subset �∗ ⊂ � to add to the current DOE and evaluate the corresponding real model output �∗; 

v) retrain a new Kriging meta-model by adding the ��∗, �∗� to the training set and go back to step i). 

As learning function (step iv above), we consider the so-called U-function, which is based on the concept 

of misclassification (Echard et al., 2011): 

Y��� = |�
��
� − |<z���|;<z��� . (12) 

In practice, Y��� represents the distance in terms of standard deviations of the meta-model prediction 

from the limit state �
��
�. The smaller the value, the closer the prediction is to the limit state and, thus, the 

higher the interest in adding the corresponding I/O observation to the training set, because it reduces the 

prediction uncertainty regarding configurations “close” to the limit surface (in a probabilistic sense). 

Theoretically, the best DOE is obtained by adding at each iteration only one best candidate configuration. 

However, this increases the computational cost related to the training of the meta-model, which can be 

significant when a large number of I/O configurations are used and/or when many parameters have to be 

estimated in reason of the high dimensionality. 



To overcome this problem, a larger number of I/O configurations can be added at the same time to the 

training set. Due to the correlation function, prediction points that are close share similar prediction values 

and misclassification probabilities; thus, it is likely that in the best candidate set, there are configurations 

having similar input factors values. However, evaluating the real model with respect to similar 

configurations increases the computational cost without adding the desired amount of knowledge to the 

meta-model. To this aim, clustering techniques are here employed to select, among the best candidate set, 

the most representative configurations before evaluating the corresponding real model output (Schöbi et 

al., 2016). An alternative method for optimally adding multiple observations to the training set has been 

recently proposed in (Chevalier et al., 2014). 

As a stopping criterion (step iii above), we resort to the leave-one-out estimate of the correction factor :L����	��� (Dubourg et al., 2013): 

:L����	��� = 1[v�%w 3 ��c����g�	<��m��c����gRc�z��^\���������� ≥ 	�
��
�g
klm(n

���
, (13) 

where �z��^\����c����g is the prediction of the output associated to the factors ����, obtained with a 

Kriging model having as training set all the I/O observations except �����, ��	�. This verifies that the 

probabilistic discriminating function (i.e., the prediction) converges towards the real discriminating function 

(i.e., the real limit surface). In practice, a value of :L����	��� close to 1 indicates a satisfactory approximation 

of the real model, whereas very small or very large values indicate an inaccurate approximation. It must be 

noticed that, since the estimation is based on a LOO cross-validation, a minimum number of initial I/O 

observations, (e.g. 30 (Dubourg et al., 2013)), has to be provided to guarantee accurate estimates. On the 

other side, a maximum number of iterations can be set, in order to limit the number of calls to the real 

model. 

For building the meta-model, we resort to the UQLab Toolbox for Matlab (Marelli & Sudret, 2014), 

whereas the sequential training has been developed by the authors. 

 Deep Exploration 

The aim of the Deep EXploration (DEX) phase is to explore the system state space by resorting to the meta-

model, instead of computational expensive real one, to discover (possibly unknown) configurations leading 

to CRs. To achieve this goal, DEX starts from the “available knowledge” (in particular, from the set of critical 

configurations visited during the training of the meta-model) and exploits the following MCMC-based 

algorithm for adaptively exploring the state space by means of the meta-model. 

The algorithm proceeds as follows: 



1. Use a clustering algorithm for grouping the configurations �
�P]�  belonging to CRs. We resort to a k-

means algorithm and to an ensemble of metrics to select the number of clusters K that provides 

the best description of the available data: see (Charrad, Ghazzali, Boiteau, Niknafs, & Charrad, 2014) 

for details. Then, check the stopping criterion: if it is satisfied, stop the DEX algorithm, otherwise, 

move to step 2. 

2. Estimate for each cluster the associated covariance matrix Σ�. 

3. Distribute C MCMC chains among the identified clusters and sample the corresponding starting 

points. The simplest way to distribute the Markov chain is to randomly assign each chain to a cluster. 

However, this can lead to over-explore some regions and under-explore others. To tackle this 

problem, a new strategy for optimizing the distribution of the Markov chains have been here 

implemented. For each cluster k, its density ��  is approximated by: 

�� = [�+� = [��det�"��, (14) 

where [� is the number of configurations in the k-th cluster whose volume +� is approximated by 

the square root of the determinant of the corresponding covariance matrix, i.e., the square root of 

the product of the corresponding eigenvalues. In practice, a high value of density indicates that the 

CR has been deeply explored, whereas a small value corresponds to a roughly explored CR that 

needs additional exploration. Then, C Markov chains are distributed with the aim of maximizing the 

minimum density among clusters, which can be expressed by the following equations: 

max Smin�∈v �� + §� ∙ [��¨%�+� U (15) 

3§��∈v
= �, §� ∈ ℕA (16) 

where §� is a non-negative integer representing the number of Markov chains associated to the k-

th cluster and [��¨%� is the length of each chain. In practice, the second term in the sum (15) 

represents the expected increase of density provided by running a Markov chain within the k-th 

cluster. 

4. Sample a large number of factor configurations [�© = � ∙ [��¨%� by the Metropolis-Hasting 

algorithm: usually, the larger the dimensionality of the state space, the larger should be the number 

of configurations to sample (Chib & Greenberg, 1995; Robert & Casella, 2004). Multivariate 

Gaussian distributions with covariance matrices estimated at step 2 are employed as proposal 

distributions and a uniform distribution on the CRs support is considered as the target one. Adaptive 

MCMC algorithms can be employed to further increase the flexibility of the algorithm (Andrieu & 

Thoms, 2008; Roberts & Rosenthal, 2009). 

5. Add the configurations belonging to CRs to �
�P]�  and go back to step 1. 



The stopping criterion requests that the clustering algorithm at step 1 identifies the same optimal 

number of clusters for three consecutive iterations. This implies that the DEX algorithm is filling with extra 

configurations the same number of CRs, without adding extra knowledge. Alternative and/or additional 

criteria could be used: i) a maximum number of iterations [
�P can be set in order to control the 

computational cost associated to the clustering step; ii) a minimum value of density �� can be set to 

guarantee a desired level of accuracy in the meta-model exploration. A flow diagram of the entire procedure 

is reported in Fig. 2. 

 

Fig. 2 Flow diagram of the deep exploration method. 

 Representation and Information Retrieval 

At the end of the deep exploration step a number of critical configurations are available in the form of a list 

of vectors, whose physical interpretation (and visualization) may not be trivial. This is even more apparent 

when the dimensionality of the state space is larger than 3-4, since the most common representation 

techniques cannot be used (S. Liu et al., 2017). For this reason, a post-processing of the available critical 

configurations is needed for the retrieval of useful information. 



Firstly, the critical configurations are grouped according to the optimal number of clusters obtained from 

the last iteration of the deep exploration algorithm (see Section 3.3). This allows the analyst to understand 

how many CRs characterize the system. Secondly, two techniques for high-dimensional data visualization 

are employed for their representation. These are the ScatterPLOt Matrix (SPLOM) (Hartigan, 1975) and the 

PCP (Inselberg, 2009), which help in retrieving complementary information about the CRs, such as their 

shapes and the corresponding input values in a unique, “readable”, graphical representation. 

In particular, SPLOM represents the two-dimensional projections of the CRs over all the possible pairs of 

coordinates, which aids the analyst in identifying the shapes of the CRs. Interactive scatter plots have been 

recently proposed to allow exploring interactively not only the projection on the two-dimensional spaces 

defined by the main coordinates, but also every two-dimensional projection of the available data (Cook & 

Swayne, 2007). 

On the other side, in PCP each of the /coordinates is represented by a vertical axis and a point (i.e., an 

input vector) in the /-dimensional space is represented by a line in the PCP. For the sake of clarity, assuming 

to have a 5-dimensional point � = �2	4	1	5	1�, its representation in PCP is given by Fig. 3. The advantage of 

PCP is that it represents all the coordinates in a single plot and, by so doing, it provides the analyst with 

information on the range of values defining the CRs and helps in distinguishing possible patterns 

characterizing the different clusters. 

 

Fig. 3 PCP of a 5-dimensional point. 

 Exploration Assessment 

Assuming that the real limit function representing the configurations in the CRs is available, the objective 

of the assessment phase is to measure how satisfactorily the exploration method has identified the 

configurations leading to critical conditions. Only for illustrative purposes, Fig. 4 left shows the output of an 

accurate exploration of a two-dimensional space, where the real CR (shadowed) is sufficiently covered by 

the configurations selected by the explorative method (circles); on the contrary, Fig. 4 right shows an 

incomplete exploration where a fraction of a CR is identified, but not entirely covered, and another CR is 

not even explored. 



Quantitative metrics are here introduced to assess the quality of the exploration: in particular, the 

population of critical configurations visited by the proposed methodology �
�P]�  (cyrcles) is compared to a 

uniformly distributed population of samples belonging to the real CRs ��
¨­]�  (crosses), according to a 

distance-based criterion. 

 

Fig. 4 Representation of an accurate CR exploration (left) and of an incomplete CR exploration (right). 

A one-vs-all version of the Local Outlier Factor (LOF) is employed to this aim, where each configuration 

in the real CRs is compared to the whole population of critical configurations obtained by the exploration 

method. For the sake of completeness, LOF is a density-based outlier detection method capable of 

measuring how isolated is a sample from the rest of a given population of interest (Breunig et al., 2000). In 

our case, the more isolated a real CR configuration is from the explored ones, the higher the probability 

that it belongs to an unexplored CR. 

The definition of the LOF relies on the concept of reachability distance between points � and ®: 

¯�
¨����, ®� = maxc¯�kk�®�, ¯��, ®�g, (17) 

where ¯�∙,∙� is a generic distance and ¯�kk�®� is the distance of the k Near Neighbor (kNN) of o. In this 

paper, the Euclidean distance is employed; however, the Manhattan or even lower order °P distances can 

be preferable in high dimensionality (Aggarwal et al., 2001). Then, the local reachability distance, which 

measures how close is the configuration � to its kNNs, can be defined as: 

±²¯���� = ³∑ ¯�
¨����, ®�®∈�kk��� . (18) 

In this light, the LOF of a configuration � is defined as: 

°´µ��� = 1³ 3 ±²¯��®�±²¯����®∈�kk���
, (19) 

where the parameter ³ has to be set by the analyst (and it is not related to the number of clusters ¶ 

identified in Section 3.3). 

In general, a value of °´µ��� ≈ 1 indicates that the configuration � is well represented by the rest of the 

configurations, whereas a value of °´µ��� ≫ 1 indicates that the configuration � is isolated. In order to 



have a reference value for detecting a critical configuration as unexplored, the LOF is evaluated for all critical 

configurations � ∈ �
�P]�  (namely, °´µ
�P). Likewise, °´µ�
¨­ represents the random variables 

corresponding to the one-vs-all evaluations of the configurations � ∈ ��
¨­]� . A configuration � ∈ ��
¨­]�  is 

considered “unexplored”, if °´µ��� > °´µ¹¹¹¹¹¹
�P where: 

is the LOF corresponding to the most isolated configuration explored. 

The following distance-based statistics have been considered to synthetize the overall performance of 

the exploration method: 

1. Expected LOF: 

|��º�
¨­ = &�°´µ�
¨­! (21) 

A value of |��º�
¨­ ≫ 1 indicates that some CRs are probably unexplored. 

2. Unexplored Critical Region (UCR): 

Y�� = #c°´µ�
¨­ > °´µ¹¹¹¹¹¹
�Pg#��
¨­]�  (22) 

which is the ratio between the number of real critical configurations identified as unexplored and 

the cardinality of ��
¨­]� . In practice, it represents the “fraction” of CR that have not been explored 

by the method. 

3. Unexplored Extreme Critical Region (UECR): 

Y&��¼% = Y��¼%|��
¨­^]� = #c°´µ�
¨­ > °´µ¹¹¹¹¹¹
�P|��
¨­^]�g#��
¨­^]�  (23) 

where ��
¨­^]� ⊂ ��
¨­]�  is the subset of critical configurations leading to the most “extreme” outputs. 

In particular, ¾ ∈ �0,100!% is the quantile used to characterize the extreme outputs: letting ¾ =0.9, then a critical configuration is considered “extreme” if its output is larger than the output of 

90% of the population. This metric allows the analyst to understand whether the method has 

discovered the CRs leading to the most critical outputs. 

4. Conditional Expected LOF: 

|��º|W]� = & À°´µ�
¨­°´µ¹¹¹¹¹¹
�P |°´µ�
¨­ > °´µ¹¹¹¹¹¹
�PÁ (24) 

that indicates how much isolated are on average the unexplored critical configurations with respect 

to the most isolated critical configuration explored. In practice, values of |��º|W]� ≫ 1 indicate the 

presence of critical configurations that are very isolated from the explored CRs and, thus, warn the 

analyst on the presence of CRs disconnected from those already identified. 

°´µ¹¹¹¹¹¹
�P =	 max�∈��ÂN�Ã °´µ��� (20) 



 Case Study 

In this section, a power distribution network is analyzed, under the Direct Current (DC) approximation 

(Purchala et al., 2005), in order to explore and discover possible critical scenarios (Mena et al., 2014). The 

network, represented in Fig. 5, is composed of 10 feeders transporting energy from a unique Main Source 

MS to 8 demanding nodes (consumers) characterized by different daily load profiles. The simplified model 

considers only the active power flows, neglecting power losses, and assumes a constant value of the voltage 

throughout the network. The main source is assumed to be always capable of satisfying any demand and 

no constraints on the feeders capacity are defined. 

The load profiles °x assume different shapes according to the corresponding type of consumers 

associated. These include residential consumers and offices whose per unit (p.u.) daily spot load profiles 

are reported in Fig. 6. In detail, the daily load °x of a demanding node is given by: 

°x�F� = ²x��F� + Äx´�F� (25) 

where ��F� and ´�F� are the p.u. daily loads, whereas ²x and Äx are the corresponding average loads for 

the residential consumers and office, respectively (Jardini et al., 2000). The values of the average loads used 

in this paper are reported in Table I. Uncertainty and seasonality effects on the average loads can be easily 

embedded into the model. Nevertheless, since the focus of the study is on the exploration of the daily 

profiles to verify the impact of feeder failures, they are not taken into account in this paper. 

 

Fig. 5 Power network configuration. 



 

Table I Average load values for the 8 nodes of the network in kW. 

NODE 1 2 3 4 5 6 7 8 

r 0 0 0 1 1 5 5 5 

o 5 5 100 0 0 0 0 0 

 

We assume that each feeder $ can independently fail only once within the 24 hour, at a random time Å% ∈ �0,24� and with associated magnitude of the failure µ%. When the i-th feeder fails, no power can flow 

through it for a time proportional to the magnitude of the failure: for example, µ% = 0.5 means that the 

feeder is out of service for half an hour. In this view, � = �Å�, … , Å�A, µ�, … , µ�A! is the M-dimensional vector 

of the inputs to the model and represents a given failure configuration. 

The electrical Energy Not Served (ENS) to the consumers is considered as output of the model and it is 

defined in this case as:  

&["��� = 	Æ 3}kÇÇ�
��y� ∙ °x�F�
È

x��
¯F=É

A
, (26) 

where [""�F� indicates the Not Supplied Set at time t, i.e., the set of nodes that are not served at time t 

and } is the indicator function which takes value 1 if y ∈ [""�F�, and 0 otherwise. Moreover, ENS is used 

to discriminate the critical conditions, i.e., a value of &["��� ≥ &["
��
� implies that the failure 

configuration X is critical; otherwise, X is considered as “normal”. The value of &["
��
� is set equal to 500 

kWh, in order to focus the attention on critical events. 

 Dimensionality Reduction 

For the dimensionality reduction step, we resort to PCE, where the maximum degree of the polynomials is 

fixed to 5 in order to reduce the computational cost and focus the attention on the main trend of the model. 

 

Fig. 6 Power per unit load profiles for a residential consumer (left) and for a commercial office (right). 
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The coefficients of the PCE are estimated by Least Angle Regression on the basis of a DOE of 500 samples 

obtained with a QMC Sobol’ sequence. Fig. 7 shows that there is a huge difference between the total order 

indices "# of the inputs: those associated to feeders 3 and 10 (i.e., ÅÊ, Å�A, µÊ, µ�A) take values larger than 

0.2, whereas the others take values lower than 0.05. This is in accordance with the fact that feeders 3 and 

10 are the only two that can affect the energy supplied to the most demanding consumer. 

In this light, the dimensionality of the reduced-model is set to 4 with �∗ = �ÅÊ, Å�A, µÊ, µ�A�, and the rest 

of the factors are set to randomly fixed values, since they are expected to have no effect on the output. 

Notice that alternatively, they can be set to values expected to lead to the worst outputs, i.e., the 

magnitudes of the failures at their maximum values and the corresponding failure times within the time 

window of high load: this would lead to higher values of ENS and, thus, to a more conservative exploration. 

Finally, it must be observed that two main elements contribute to the importance of a feeder in the 

network: i) its topological position and ii) the demand of the nodes that rely on it. For example, if the highest 

demand were associated to node 7 instead of node 3, feeder 10 would still remain the most important 

(since its failure prevents all nodes to be served), whereas we would expect feeders 9 and 7 being more 

important than feeder 3. In this view, it must be observed that the results are conditioned to the average 

demands reported in Table I. 

 Meta-modeling 

For training the meta-model we resort to an ordinary kriging, i.e., the trend is assumed to be unknown but 

constant, which allows the Gaussian process to completely adapt to the training data. An ellipsoidal 

anisotropic correlation function is used to take into account possible different behaviors of the response 

function with respect to different factors: in particular, we resort to the 3/2 Matérn one (Abramowitz & 

Stegun, 1964; Rasmussen & Williams, 2006): 

 

Fig. 7 Sobol’ total order indices for the 20 input factors. 
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(27) 

where v is the shape parameter and i the scale one. 

Given the dimensionality of the reduced model, 100 configurations sampled with a Sobol’ QMC and the 

corresponding ENS are used for initializing the meta-model. Then, through the iterative AK-MCS introduced 

in Section 3.2, 10000 configurations are sampled by means of LHS and a maximum of 50 candidate 

configurations are evaluated and added to the DOE �Ô��%w, Õ��%w� at each step. Only configurations having 

a value of the U-function lower than 4 are eligible as candidates. Actually, Y��� > 4 indicates that the 

corresponding configuration is, in a probabilistic view, very distant from the critical threshold. A maximum 

number of 1000 I/O observations for training the meta-model is set in order to limit the maximum 

computational effort. Fig. 8 shows the projection on the two-dimensional subspace [ÅÊ, Å�A] of the 

configurations used to train the meta-model: on the left panel, we report the initial 100 samples used for 

the initialization, whereas on the right, the 900 sample added iteratively by the AK-MCS are shown. It is 

worth noticing how the adaptive DOE distributes the observations differently in the different portions of 

the input domain (i.e., a significantly higher density in the CRs). 

 Deep Exploration 

From the Kriging DOE, 169 configurations are identified as critical. In order to deeply explore the CR, 5 

iterations of the method proposed in Section 3.3 are run with 5 Markov chains and a maximum number of 

samples equal to 5000. Fig. 9 shows the projections on the two-dimensional subspace �ÅÊ, Å�A! of the 

 

Fig. 8 Projection of the DOE used for training the meta-model. The figure on the left shows the initial 100 Sobol’ QMC 

samples, whereas on the right those added by the AK-MCS. 



configurations belonging to the CR. The left panel reports the configurations available from the meta-model 

DOE, whereas that on the right contains those obtained as a result of the deep exploration (~3000 

configurations). It is worth noticing that the deep exploration allows better highlighting the boundaries of 

the CRs and, thus, to better retrieve their shapes and characteristics. This is even more apparent in high-

dimensional spaces. Only one projection of the CRs configurations is here reported for brevity; nevertheless, 

a detailed analysis is given in the following sections. 

 Representation and Information Retrieval 

A sequence of k-means clusterings with different cluster cardinality (from ¶=1 to 10) is applied to the critical 

configurations for identifying the more representative number of separate CRs. Several cluster validity 

indices (e.g., Hubert statistic, Dunn, Silhouette, Davies and Bouldin, Calinski and Harabasz indices, etc.) have 

been computed to this aim; however since this analysis goes beyond the scope of the present paper, the 

reader is referred to (Arbelaitz et al., 2013; Charrad, Ghazzali, Boiteau, & Niknafs, 2014) for details. Two 

clusters have been identified and the corresponding PCP is reported in Fig. 10. For the sake of clarity, the 

envelopes of the parallel coordinates representing the two clusters (i.e., the ranges of values characterizing 

the clusters) are shown in Fig. 11. By observing these ranges, it is also possible to have an idea of the 

dimension of the CRs. In this case, for example, they occupy respectively around the (30%, 30%, 20%, 20%) 

of the entire range of the four important factors ÅÊ, Å�A, µÊ and µ�A, which corresponds to ~0.36% of the 

entire input domain. The CRs are characterized by failures occurring during the central hours of the day 

(between 8-15) and with a failure magnitude above the 0.8, i.e. the feeders are out of order for at least 

48min each. In addition, it is worth noticing that the two clusters show different behaviors on the two axes 

corresponding to the failure times, i.e., ÅÊ and Å�A. 

 

Fig. 9 Two-dimensional projections of the observations belonging to the CRs: those available from the DOE of the 

meta-model (left) and those obtained with the deep exploration step (right). 



For this reason, the corresponding SPOLM is given in Fig. 12, where the “envelopes” identified on the 

PCP are represented in the panels above the diagonal by means of shadowed rectangles. It can be observed 

that the two clusters are recognizable and well separated on the subspace defined by �ÅÊ, Å�A!: cluster 1 is 

characterized by an initial failure of feeder 10 followed by a failure of feeder 3 with a delay of at least one 

hour, whereas cluster 2 is characterized by the inverse sequence, still with a delay of at least one hour 

between failures. Indeed, if both failures happen at the same time, the ENS associated to node 3 is the same 

as if only one of the two failures had happened, because both feeders are put under repair at the same time 

and, thus, the total time of energy not supplied to user 3 is “just” one hour. 

Concerning the subspace defined by [µÊ, µ�A], it must be noticed that there is no difference between the 

two clusters. However, the triangular shape of the region shows that the sum of the two failure magnitudes 

must be at least equal to 1.80, i.e., the consumer at node 3 is not served for at least 1h:48m. 

Finally, although the two-dimensional projections of the PCP envelopes overestimate the regions of the 

associated CRs, they provide a synthetic representation, which can be useful as first approximation of the 

CRs. 

 

Fig. 10 PCP of the two CRs identified. Fig. 11 Envelopes of the PCP representing the factors 

ranges. 



 Performance Assessment 

In order to have a representative picture of the real CRs, a large number of configurations involving all 20 

input factors of the model have been sampled by means of LHS and the corresponding output has been 

evaluated. Moreover, the outputs of the reduced model involving the projections of the 20 factors on the 

4-dimensional space defined by �ÅÊ, Å�A, µÊ, µ�A! have been evaluated as representative of the ideal 

“target”, meta-model representation. The number of calls to the expensive model and/or to the cheap one 

(i.e., the meta-model) is given in Table II for each exploration strategy. 

Table II Number of calls made to the computationally cheap and/or expensive model for the different exploration 

strategies. 

COPUTATIONAL COST META-MODEL REDUCED-MODEL REAL-MODEL 

CHEAP ~200000 0 0 

EXPENSIVE 1500 100000 100000 

 

Among the large number of configurations sampled, those leading to critical values of ENS are selected 

and the corresponding LOF evaluated to verify to what extent the CRs discovered by the meta-model are 

similar to those found by the reduced and real-models (see Section 4). The values of the associated statistics 

are given in Table III. The CRs of the meta-model are used as the reference set, thus, only the corresponding 

 

Fig. 12 SPLOM of the two CRs discovered by the exploration algorithm. Above the diagonal, the projections of the PCP 

envelopes are depicted by means of shadowed rectangles. 



expected value of the LOF can be evaluated. By looking at the results obtained for the reduced-model, it 

must be observed that all the statistics assume low values: the average value of LOF is very close to that of 

the meta-model; the percentage of CR that remains unexplored is only 3%, and the associated conditional 

value is still very low (i.e., 1.08), which means that the unexplored CRs are very close to the boundaries of 

the CRs identified by the meta-model. In this light, it can be stated that the meta-model exploration has 

accurately explored and discovered the CRs associated to the reduced model. 

On the other side, with respect to the real model, the average LOF takes a large value compared to the 

meta-model, suggesting that a part of the CRs remains unexplored. This is confirmed by the percentage of 

unexplored CR. However, it must be noticed that the percentage of unexplored extreme CR is very low, i.e., 

the meta-model exploration has been able to identify the configurations leading to the most critical outputs. 

Finally, the conditional expected value |��º|W]�  takes a value that is not very large, suggesting that the 

unexplored portion of CRs is likely to be close to the boundaries. 

Table III Local Outlier Factor (LOF) based statistics for the different exploration strategies. 

METRIC META-MODEL REDUCED-MODEL REAL-MODEL 

Ö×ØÙ 1.02 1.03 2.66 

ÚÛu - 3% 72% 

ÚÜÛuÝX% - 0% 7% 

Ö×ØÙ|ÚÛu - 1.08 2.20 

 

In order to visualize the results, we resort to a SPLOM where the CRs identified by the meta-model 

exploration are depicted by light circles and the configuration belonging to the CRs associated to the real 

model are depicted by crosses and squares according to their values of LOF. In particular, in accordance 

with Section 4: those configurations having °´µ ≤ °´µ¹¹¹¹¹¹
�P (see Eq. (20)) are defined as identified CR 

(crosses), whereas those having °´µ¹¹¹¹¹¹
�P < °´µ are defined as undiscovered CR (squares). It must be 

noticed that there is not a significant difference between the Meta-Model (MM)-based and the real-model-

based exploration in the subspace characterized by the failure times �ÅÊ, Å�A!. On the contrary, there is a 

significant difference in the failure magnitude subspace �µÊ, µ�A!: according to the real model, it is enough 

that the sum of the magnitudes is larger than ~1.60. This means that the real model can reach a critical 

condition even if the consumer at node 3 is not served for at least 1h:36m. Indeed, the rest of the ENS 

needed to reach the critical threshold can come from the failures of the feeders discarded during the 

dimensionality reduction step. Finally, by looking at the last column of Fig. 13, it can be seen that the largest 

values of ENS, i.e., the most critical ones, are correctly discovered by our methodology (crosses). 



A sort of sensitivity analysis to the model parameters has also been conducted to verify the performance 

of the proposed methodology when the impacts of the discarded factors is very low, i.e., when the reduced-

model is likely to represent the real model. To this aim, all the loads except that of node 3 have been reduced 

of a factor 10 (the corresponding values are reported in Table IV). In order to assure the presence of a CR 

despite the loading reduction, the threshold &["
��
� has been set equal to 475 kWh, i.e. 5% lower than 

the initial one. All the analyses have been run with the same settings and with the same number of calls to 

the model as in the initial case. 

Table IV Average load values for the 8 nodes of the network in kW. 

NODE 1 2 3 4 5 6 7 8 

r 0 0 0 0.1 0.1 0.5 0.5 0.5 

o 0.5 0.5 100 0 0 0 0 0 

 

Table V reports the result of the statistics associated to the LOF for the reduced and the real model-

based exploration. The average value of the LOF is for all types of exploration very close to 1, indicating that 

it is likely that all CRs have been discovered. This is confirmed by the percentage of unexplored CR, which is 

null for both models. The value of Ö×ØÙ|ÚÛu is not reported, since no configuration has been identified as 

unexplored. 

 

Fig. 13 SPLOM of the CRs discovered by the Meta-Model (MM) exploration (light circles. The CR of the real model are 

depicted with different symbols whether identified (cross) or not (square). 



Table V Local Outlier Factor (LOF)-based statistics for the different exploration strategies. 

METRIC META-MODEL REDUCED-MODEL REAL-MODEL 

Ö×ØÙ 1,02 1,01 1,07 

ÚÛu - 0 0 

ÚÜÛuÝX% - 0 0 

 

Fig. 14 shows that all critical configurations discovered by means of the real model-based exploration lay 

inside or at the boundaries of the CRs discovered by our methodology (dark crosses). These results 

demonstrate how the proposed methodology is capable of identifying the CRs resorting to a limited number 

of calls to the real model: in this case, two orders of magnitude lower than the exploration based on the 

real-model. 

 Conclusions 

Knowing the possible behavior of a safety-critical, engineered system under different setting of the 

influencing (operational and environmental) factors is of paramount importance for improving the safety of 

the system. In particular, discovering configurations of factors that lead the system to critical, dangerous 

 

Fig. 14 SPLOM of the CRs discovered by the Meta-Model (MM) exploration (light circles. The CRs of the real model are 

depicted with different symbols, whether identified (cross) or not (square). 



conditions allows prevention and preparation. To this aim, in this paper, we have proposed an adaptive 

exploration framework for discovering and characterizing the Critical Regions (CRs) of a system, whose 

numerical model is: i) computational expensive, ii) high-dimensional, iii) complex. 

The proposed methodology resorts to: i) a dimensionality reduction technique relying on a PCE-based 

sensitivity analysis for identifying the subspace that most characterizes the system behavior; ii) a meta-

model namely Kriging for reproducing the system behavior while reducing the computational cost to run a 

simulation; iii) an adaptive exploration technique employing an adaptive MCMC algorithm for collecting 

information about the CRs; iv) clustering (i.e., k-means) and high-dimensional data visualization methods 

(i.e., PCP and SPLOM), for defining and characterizing the shape of the CRs of the system.  

For exemplification, the method has been used for exploring the response of a power network model to 

several types of accidents involving up to 20 input factors. The method has been shown capable of 

effectively identifying the failure times and magnitudes leading the system to the most critical state, i.e., 

the one with the largest quantity of energy not supplied, indicating two specific failures sequences as the 

most dangerous ones. 

The main benefit of the proposed method is the capability of exploring and retrieving useful information 

by resorting to a limited number of calls to the real (computationally expensive) model. This has been 

demonstrated by comparison with another exploration strategy based on LHS showing a computational 

saving of two orders of magnitudes. Furthermore, the framework has turned out to be very versatile by 

allowing the analyst to possibly select only some of the steps proposed and focusing on the problem 

requirements: for example, if the real model is not high-dimensional, the dimensionality reduction step can 

be avoided. 

Although the method has been designed for and proved on a model that has a scalar output, it can also 

be applied to models having a functional output, such as the time varying trajectories of a dynamic system 

(e.g., the core temperature of a nuclear reactor in accidental conditions). In this case, an additional step for 

extracting some (possibly few) scalar features characterizing the trajectories would be needed at the 

beginning of the analysis. 

Finally, the proposed method inherits the limitations of the techniques employed. In particular, the 

results of the PCE-based sensitivity depends on the capability of the PCE of capturing the global behavior of 

the response function, and the Kriging performance usually decreases with high-dimensional inputs. In this 

light, the method is expected to be efficient as long as the number of important variables identified by the 

dimensionality reduction step is sufficiently low to be managed by a Kriging meta-model. 
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