Model Uncertainty in Accelerated Degradation Testing Analysis
Le Liu, Xiao-Yang Li, Enrico Zio, Rui Kang, Tong-Min Jiang

To cite this version:
Model Uncertainty in Accelerated Degradation Testing Analysis

Le Liu, Xiao-Yang Li, Enrico Zio, Senior Member, IEEE, Rui Kang, and Tong-Min Jiang

Abstract—In accelerated degradation testing (ADT), test data from higher than normal stress conditions are used to find stochastic models of degradation, e.g., Wiener process, Gamma process, and inverse Gaussian process models. In general, the selection of the degradation model is made with reference to one specific product and no consideration is given to model uncertainty. In this paper, we address this issue and apply the Bayesian model averaging (BMA) method to constant stress ADT. For illustration, stress relaxation ADT data are analyzed. We also make a simulation study to compare the s-credibility intervals for single model and BMA. The results show that degradation model uncertainty has significant effects on the p-quantile lifetime at the use conditions, especially for extreme quantiles. The BMA can well capture this uncertainty and compute compromise s-credibility intervals with the highest coverage probability at each quantile.

Index Terms—Accelerated aging, Bayesian methods, degradation, stochastic processes, uncertainty.

NOMENCLATURE

A. Acronyms

ALT Accelerated life test(ing).
ADT Accelerated degradation test(ing).
AIC Akaike’s information criterion.
BMA Bayesian model averaging.
D–S Dempster–Shafer
MLE Maximum-likelihood estimator.
MCML Markov chain Monte Carlo.
USP Unified stochastic degradation model.
PDF Probability density function.
CDF Cumulative density function.
FPT First passage time.

BISA Birnbaum–Saunders-type distribution.
CP Coverage probability.
AL Average interval length.

B. Notation

$X(t)$ Age degradation path.
$\Lambda(t)$ Age function of time t.
γ Time-scale parameter.
μ, σ Degradation parameters.
α_0, α_1 Acceleration parameters.
$a(t), b(t)$ Parameters in the unified model.
c, C Candidate model c, number of models.
D ADT dataset.
$f_N(\cdot)$ PDF of normal distribution.
$f_{Ga}(\cdot)$ PDF of Gamma distribution.
$f_{IG}(\cdot)$ PDF of inverse Gaussian distribution.
i, j, k ith stress level, unit j, measurement k.
K Number of stress levels.
n_i Test samples under the ith stress level.
n_{ij} Number of measurements for unit j under the ith stress level.
s, s' Stress level.
$L(\cdot), l(\cdot)$ Likelihood and log-likelihood function.
$\theta_e, \hat{\theta}_e, \bar{\theta}_e$ Vector of parameters.
ω Failure threshold.
p, z Quantile.
$t_p, t_{pc}, \hat{t}_{pc}$ p-quantile lifetime at the use condition.
q Confidence level.
∇t_p First derivative of t_p.
$AV ar(\cdot)$ Asymptotic variance.
I, I^{-1} Fisher information matrix, its inverse.
$\Gamma(\cdot)$ Gamma function.
$\psi(\cdot), \psi_1(\cdot)$ Digamma and trigamma function.
$P(\cdot)$ Model probability.

I. INTRODUCTION

M ANY products are designed to be highly reliable and to have a long lifespan, e.g., battery life of 15 years for hybrid electric vehicles [1]. Traditional reliability tests are obviously not suitable for the reliability assessment of such products over such long time spans. Thus, accelerated degradation tests (ADT) are widely used to accelerate the failure/degradation processes by exposing the products to severe test conditions. Successful applications of ADT have been developed for batteries [2], light-emitting diodes [3], metal–oxide–semiconductor field-effect transistors [4], smart electricity meter [5], and others.
In standard ADT data analysis, a degradation model is assumed to describe the degradation paths of the samples tested at different stress levels and some specific parameters of the model are assumed to be stress related, as described by a given acceleration model, e.g., the drift coefficient in the Wiener process \[6\]–[8]. In general, acceleration models are assumed based on the physical mechanisms of the tested samples or empirical observations of the stress variable \[9\], e.g., temperature-Arrhenius model, voltage-Eyring model, etc. After obtaining the data from ADT, inference on unknown parameters is taken up, both of the degradation and acceleration models. Then, the product reliability assessment and lifetime evaluation are performed with the estimated parameters under the given use conditions. Statistical inference methods for ADT data analysis have been extensively reviewed in \[10\] and \[11\].

In the literature, stochastic process models has drawn more attention than degradation-path models due to their ability to describe temporal variability \[12\], like the Wiener process model \[13\], \[14\],Gamma process model \[15\]–[18], and inverse Gaussian process model \[19\]–[22]. The Wiener process model is often used when the degradation process is fluctuating with time. If the degradation process is nondecreasing, both Gamma and inverse Gaussian process models are generally used in preference to the Wiener process model and to ensure the monotonic property. However, in some engineering applications, the Wiener process model is also used to deal with monotonous data. Examples are given in \[23\]–[25].

For a given ADT dataset, more than one model might be plausible to describe it. Thus, model uncertainty exists in standard ADT data analysis, which has not been considered and that may lead to wrong inferences. Also, in ALT, different lifetime distributions may plausibly describe the time to failure data and the problem of model uncertainty arises. This is, for example, treated in \[26\] by the BMA method, with demonstration that the choice of the distribution has significant effects on the results of the lifetime evaluation at the use conditions, especially for extreme quantiles. For ADT, the AIC has been introduced to select the appropriate model \[7\], \[27\]. However, the effect of model uncertainty on the lifetime evaluation results is not considered. In \[28\], both Wiener and Gamma process models have been used, and shown to give accurate parameter estimates. However, the question remains to how the degradation model affects the lifetime evaluation results and how the model uncertainty can be accounted for.

Although it would be possible account both for accelerating and degradation models uncertainty, as mentioned in \[26\], this can result in a very complicated extrapolation. Hence, following \[26\] in this paper, we consider only the uncertainty about the degradation models by analyzing three stochastic process models commonly used in ADT.

With respect to model uncertainty in literature, many works have addressed this issue \[29\]–[31]. In \[32\], two approaches, i.e., alternate hypotheses (also known as model averaging) and adjustment factor, have been used to treat model uncertainty by expert judgments. The former one combines all the available models through a mixture of probabilities. The latter selects a best model as reference and updates it with information from the other models. Model averaging has been fully extended into BMA \[33\]–[36], by the integration of model prior knowledge and the likelihood function of the obtained data for each model. In \[37\], it is applied to account for model uncertainty based on the differences between experimental observations and model predictions.

One problem of the model averaging method is that it assumes that the real model is one of the candidate models since the summation of model probabilities must be equal to one, even though it is unknown and of difficult interpretation, and controversial in practical applications. To relax this assumption, D–S theory can be introduced, using belief and plausibility functions to account for model uncertainty \[38\], \[39\]. Some difficulties may arise in this method for the elicitation of expert knowledge on the belief values to assign to the models.

As to the adjustment-factor method, some work has been done for its application to accelerated testing models based on field lifetime or degradation data. For example, Wang et al. \[40\] chose exponential and Weibull lifetime distributions as the reference models for Device-A ALT data; then, a calibration factor is introduced to update the reference models with the field failure data since the lab-test environment and field conditions are different. A similar procedure is used for ADT models in \[41\].

In this paper, we contribute to accounting for model uncertainty in the lifetime evaluation from ADT data. The BMA method is selected due to its mathematical soundness and computational convenience. For the application of BMA, we assume that the three degradation models are an exhaustive set within which the real model lies. An alternative could be to the D–S theory with expert knowledge or the adjustment-factor method based on field information, but these are not within the scope of this paper, and will be considered in future works.

The rest of the paper is organized as follows. In Section II, a unified stochastic process (USP) model is defined to comprise the three candidate models and the statistical inferences. The MLE and its \(\alpha\)-confidence interval for \(p\)-quantile lifetime estimation at the use conditions are also proposed. The lifetime is determined assuming that the considered degrading units fail when the degradation levels exceed a given threshold, called the failure threshold. In Section III, the BMA method for model uncertainty analysis is introduced and MCMC is implemented for its numerical resolution. In Sections IV and V, an illustrative example is presented to show the implementation of the method proposed in the preceding sections. Finally, some concluding remarks are given in Section VI.

II. THE USP MODEL FOR ADT EVALUATION

A. Unified Stochastic Degradation Model

In standard ADT analysis, it is customary to assume that the degradation \(X(t)\) follows a process with statistically independent increments, where the mean and variance of \(X(t)\) are proportional to the age function of time as \(\Lambda(t)\), and \(\Lambda(t)\) is a nonnegative increasing function. Herein, a unified stochastic process \(X(t) = USP(t)\) is a process with statistically independent increments such that the mean and variance functions have the form

\[
E(X(t)) = \mu \Lambda(t)
\]

\[
Var(X(t)) = \sigma^2 \Lambda(t)
\]
where \(\mu, \sigma^2 > 0 \) and \(\Lambda(t) \) is a nonnegative increasing function. If for any fixed \(t > 0 \), the PDF of \(X(t) \) depends on two parameters \(a(t) \) and \(b(t) \), which are values of positive time functions \(a \) and \(b \), then, we use notation \(X(t) \sim \text{USP}(a(t), b(t)) \), shortly \(X \sim \text{USP}(a, b) \). Taking into account that the mean and the variance are functions of \(a(t) \) and \(b(t) \), equalities (1) and (2) imply that these functions can be written in terms of \(\mu, \sigma^2 \) and \(\Lambda(t) \).

For instance, the unified stochastic process model becomes the Wiener process model when \(X(t) \sim N(a(t), b(t)) \), where \(a(t) = \mu \Lambda(t) \) is the mean value and \(b(t) = \sqrt{\sigma^2 \Lambda(t)} \) is the standard deviation. For any fixed \(t > 0 \), the PDF of \(X(t) \) is
\[
f_N(x | a(t), b(t)) = \frac{1}{\sqrt{2\pi b(t)}} \exp \left(-\frac{(x - a(t))^2}{2b(t)^2} \right). \tag{3}
\]
The unified stochastic process model becomes the Gamma process model when \(X(t) \sim \text{Ga}(a(t), b(t)) \), where \(a(t) = \frac{\mu^2 \Lambda(t)}{\sigma^2} \) is the shape parameter and \(b(t) = \frac{2\sigma}{\mu} > 0 \) is the scale parameter. For any fixed \(t > 0 \), the PDF of \(X(t) \) is
\[
f_G(x | a(t), b(t)) = \frac{b(t)^{a(t) - 1}}{\Gamma(a(t))} x^{a(t) - 1} \exp \left(-\frac{x}{b(t)} \right), x > 0. \tag{4}
\]
The unified stochastic process model becomes the inverse Gaussian process model when \(X(t) \sim \text{IG}(a(t), b(t)) \), where \(a(t) = \mu \Lambda(t) \) is the mean parameter and \(b(t) = \frac{\mu^2 \Lambda(t)}{\sigma^2} > 0 \) is the shape parameter. For any fixed \(t > 0 \), the PDF of \(X(t) \) is
\[
f_{IG}(x | a(t), b(t)) = \sqrt{\frac{b(t)}{2\pi x^3}} \exp \left[-\frac{(b(t) - x - a(t))^2}{2a(t)^2 x} \right], x > 0. \tag{5}
\]
Through the above definitions, we can analyze the influence of the degradation model uncertainty on the \(p \)-quantile lifetime at the use conditions.

B. Acceleration Model With Normalized Stress

The acceleration model describes the relationship between the accelerated stress \(s'_i \) and the degradation rate \(\mu_i \). It can be obtained based on either physical knowledge of the tested products or empirical observations. The typical physics-based acceleration models include the Arrhenius model, Eyring model, etc. [9], while the empirical acceleration models include the Coffin–Manson model [42], etc. A general log-linear form of the model can be written as
\[
\mu_i = \exp(\alpha_0 + \alpha_1 s_i) \tag{6}
\]
where \(\alpha_0 \) and \(\alpha_1 \) are two constant parameters, and \(s_i \) is the normalized accelerated stress level given by [8]
\[
s_i = \begin{cases}
1/s_0 - 1/s'_i & \text{Arrhenius relation} \\
\ln s'_i - \ln s_0 & \text{power law relation} \\
\frac{s'_i - s_0}{s_H - s_0} & \text{exponential relation}
\end{cases}
\]
where \(s_0' \) and \(s_H' \) are the normal and highest stress levels, respectively. Formulas (7) imply \(s_0 = 0, s_H = 1, s_i \in [0, 1], i = 1, 2, \ldots, K \), and the degradation rate at the use conditions is \(\mu_0 = \exp(\alpha_0) \).

C. Statistical Inference

For the constant stress scenario, we assume that \(X(t_{ijk}) \) is the \(k \)th degradation value of unit \(j \) under the \(i \)th stress level and \(t_{ijk} \) is the corresponding measurement time, \(i = 1, 2, \ldots, K, j = 1, 2, \ldots, n_i, k = 1, 2, \ldots, m_{ij} \), where \(K \) is the number of stress levels, \(n_i \) is the number of test samples under the \(i \)th stress level, and \(m_{ij} \) is the number of measurements for unit \(j \) under the \(i \)th stress level.

Let \(x_{ijk} = X(t_{ijk}) - X(t_{ij(k-1)}) \) be the observed degradation increment and \(\Lambda_{ijk} = \Lambda(t_{ijk}) - \Lambda(t_{ij(k-1)}) \) the corresponding increment of the age function. In addition, the exponential form of \(\Lambda(t) = \gamma t \) is used for time-scale transformation: when \(\gamma = 1 \), a linear function is given for the time; otherwise, it is nonlinear.

From the definitions in (3)–(5), the likelihood function of the ADT data \(D \) is given as
\[
L(D; \theta) = \prod_{i=1}^{K} \prod_{j=1}^{n_i} \prod_{k=1}^{m_{ij}} f_{\text{USP}}(x_{ijk} | a_{ijk}, b_{ijk}) \tag{8}
\]
where the unknown parameter vector \(\theta = [\alpha_0, \alpha_1, \sigma, \gamma] \). The MLE of \(\theta \) can be easily obtained by maximizing the corresponding log-likelihood function, \(l(\theta | M_i, D) \) in (9)–(11), as shown at bottom at this page, where we denote by \(M_1, M_2, \) and \(M_3 \) the candidate Wiener, Gamma, and inverse Gaussian process models, respectively. See (9)–(11) at the bottom of the page.
Noted that some degradation trajectories exceed the failure threshold under certain circumstances, which lead to the situation with both degradation and failure time data available. In this paper, we specifically concentrated on the model uncertainty in accelerated degradation testing analysis with degradation data only. For the situation also with failure time data, readers are referred to [27], [40], and [41].

D. \textit{p-Quantile Lifetime and Its Variance Through MLE}

In the following, the \textit{p-quantile} lifetime of interest is derived for the unified stochastic process USP(\(a, b\)), which can be used for maintenance decision-making or verifying the lifetime and reliability levels of the tested products.

1) \textit{p-Quantile Lifetime at the Use Condition:} It is easy to verify that in the considered Wiener process the random variable \(Y = \Lambda(T)\) has the following inverse Gaussian PDF:

\[
Y \sim f_{IG} \left(y \middle| \frac{\omega}{\mu^2}, \frac{\omega^2}{\sigma^2} \right)
\]

where \(T\) is the FPT (i.e., the time at which the degradation process first exceeds the failure threshold \(\omega\)). Hence, given that \(\Lambda(t)\) is a monotone increasing function, the following CDF is obtained for \(T\)

\[
F_T(t) = 1 - \Phi \left(\frac{\omega - \mu \Lambda(t)}{\sqrt{\sigma^2 \Lambda(t)}} \right) + \exp \left(\frac{2\omega \mu}{\sigma^2} \right) \Phi \left(\frac{\omega + \mu \Lambda(t)}{\sqrt{\sigma^2 \Lambda(t)}} \right)
\]

where \(\Phi(\cdot)\) denotes the CDF of a standard Normal random variable. The last term in the right-hand side of the equality accounts for the fact that in the Wiener process the events \(X(t) \leq \omega\) and \(X^*(t) > \omega\) have a probability strictly greater than zero [43], where \(X^*(t) = \sup_{s \in [0,t]} X(s)\). In fact, in the case of the Wiener process the events \(T > t\) and \(X(t) \leq \omega\) are not equivalent. Nonetheless, when \(\mu \Lambda(t) \gg \sigma \sqrt{\Lambda(t)}\), this term can be ignored because in this case the Wiener process is practically non-decreasing, and the CDF of the FPT can be approximated as

\[
F_T(t) \approx 1 - \Phi \left(\frac{\omega - \mu \Lambda(t)}{\sqrt{\sigma^2 \Lambda(t)}} \right).
\]

It is possible to show that such approximation is still applicable in the case of the Gamma and inverse Gaussian processes [21], [27].

It is easy to verify that, using this CDF, the following approximate expression can be obtained for the \textit{p-quantile} of the random variable \(T\) at the use condition of interest, \(\mu_0\)

\[
t_p = \Lambda^{-1} \left[\frac{\omega}{\Lambda^0} \left(\frac{\sigma}{\sqrt{\Lambda^0 \mu_0}} z_p + \sqrt{4 + \frac{\sigma^2 z_p^2}{\Lambda^0 \mu_0}} \right)^2 \right]
\]

where \(z_p\) is the \(p\)-quantile of the standard normal distribution and \(\Lambda^{-1}(\cdot)\) is the inverse function of \(\Lambda(\cdot)\). In fact, assumed that \(T\) has the CDF in (14), it results that the variable \(Y = \Lambda(T)\) has the following BISA CDF

\[
F_Y(y) = \Phi \left[\frac{1}{\alpha} \left(\sqrt{y} - \sqrt{\beta} \right) \right]
\]

with \(\alpha = \frac{\omega}{\sqrt{\sigma^2 \mu_0}}\) and \(\beta = \frac{\omega}{\mu_0}\) [27], [43]. Hence, being [44]

\[
y_p = \frac{\beta}{4} \left(\alpha z_p + \sqrt{4 + \alpha^2 z_p^2} \right)^2
\]

it results

\[
t_p = \Lambda^{-1}(y_p) = \Lambda^{-1} \left[\frac{\beta}{4} \left(\alpha z_p + \sqrt{4 + \alpha^2 z_p^2} \right)^2 \right]
\]

and thus, being \(\alpha = \frac{\omega}{\sqrt{\sigma^2 \mu_0}}\) and \(\beta = \frac{\omega}{\mu_0}\), writing \(\mu_0\) in place of \(\mu\), expression (15) is obtained.

2) \textit{Approximate Confidence Intervals Based on Fisher Information Matrix:} When constructing confidence interval based on the MLE information, both empirical (or observed) and expected Fisher information matrices can be used, see [45] and [46]. In this paper, the expected fisher information matrix is selected. Based on the best asymptotically normal distribution property of the MLE, we get the asymptotic distribution of \(\hat{t}_p\)

\[
\hat{t}_p \approx N \left(t_p, AV ar(\hat{t}_p) \right)
\]

where \(AV ar(\hat{t}_p)\) is the asymptotic variance of \(\hat{t}_p\). The \(AV ar(\hat{t}_p)\) is adopted to obtain the local estimate of \(AV ar(\hat{t}_p)\), that is

\[
AV ar(\hat{t}_p) = (\nabla t_p)^\text{T} I^{-1}(\theta_\cdot) \nabla t_p
\]

where \(\nabla t_p\) is the first derivative of \(t_p\) in (15) with respect to \(\theta_\cdot\), and \(I^{-1}(\theta_\cdot)\) is the inverse of the expected Fisher information matrix \(I(\theta_\cdot)\) in (21), shown at the bottom of this page. The elements of \(I(\theta_\cdot)\) and \(\nabla t_p\) can be found in the Appendixes A and B, respectively. Meanwhile, the values of those elements will be computed plugging the MLE estimates of unknown parameters \(\theta_\cdot\) into (21).

In order to obtain the approximate 100(1 - \(q\))\% confidence interval for \(t_p\), the logarithmic transformation is commonly

\[
I(\theta_\cdot) = \begin{pmatrix}
E \left[\frac{\partial^2 I(\theta_\cdot | M_\cdot, D)}{\partial \alpha_6^2} \right] & E \left[\frac{\partial^2 I(\theta_\cdot | M_\cdot, D)}{\partial \alpha_6 \partial \alpha_1} \right] & E \left[\frac{\partial^2 I(\theta_\cdot | M_\cdot, D)}{\partial \alpha_1^2} \right] \\
E \left[\frac{\partial^2 I(\theta_\cdot | M_\cdot, D)}{\partial \alpha_1 \partial \alpha_6} \right] & E \left[\frac{\partial^2 I(\theta_\cdot | M_\cdot, D)}{\partial (\sigma^2)^2} \right] & E \left[\frac{\partial^2 I(\theta_\cdot | M_\cdot, D)}{\partial \sigma^2 \partial \alpha_1} \right] \\
E \left[\frac{\partial^2 I(\theta_\cdot | M_\cdot, D)}{\partial \sigma^2 \partial \alpha_6} \right] & E \left[\frac{\partial^2 I(\theta_\cdot | M_\cdot, D)}{\partial \sigma^2 \partial \alpha_1} \right] & E \left[\frac{\partial^2 I(\theta_\cdot | M_\cdot, D)}{\partial \sigma^2 \partial \sigma^2} \right]
\end{pmatrix}
\]
used [11]
\[
\begin{bmatrix}
\tilde{t}_p \\
\exp\left(\frac{z_1 - \frac{1}{2} \sqrt{\text{Var}(\tilde{t}_p)}}{\tilde{t}_p}\right)
\end{bmatrix}
\begin{bmatrix}
\hat{z}_p \exp\left(\frac{\sqrt{\text{Var}(\tilde{t}_p)}}{\tilde{t}_p}\right)
\end{bmatrix}.
\]

(22)

Note that the aforementioned p-quantile life \(t_p\) and its confidence interval are naturally for Gamma and inverse Gaussian process models since they are strictly increasing. However, the Wiener process model is not monotonic that the ignorance of the exponential part will result in larger values of \(p\) than the settings (e.g., 0.01, 0.5). Hence, the \(t_p\) will become larger with more wider intervals, which is more likely to capture the true values. The results for the Wiener process model in Tables III and IV show that it has acceptable coverage probabilities with wider intervals maybe because of the approximation.

III. MODEL UNCERTAINTY THROUGH BMA

In this paper, degradation model uncertainty is considered. In order to evaluate the effects of model uncertainty to the \(p\)-quantile lifetime, the BMA method is used. This method accounts for model uncertainty by the combination of the inferences from different candidate models [33]. Herein, we briefly recall its basic formulation and, then, propose its computational implementation by the MCMC method.

A. Bayesian Model Averaging

Denoting by \(\Delta\) the quantity of interest, i.e., the \(p\)-quantile lifetime \(t_p\) at the use condition, its posterior distribution given data \(D\) is given as

\[
f(\Delta|D) = \sum_{c=1}^{C} f(\Delta|M_c, D) P(M_c|D)
\]

(23)

where \(f(\Delta|M_c, D)\) is the posterior density of \(\Delta\) assuming that \(M_c\) is the correct model and \(P(M_c|D)\) is the posterior probability that candidate model \(M_c\) is the correct model, which serves as weight in the average and is given by

\[
P(M_c|D) \propto f(D|M_c)P(M_c)
\]

(24)

where \(P(M_c)\) is the prior probability that \(M_c\) is the correct model and \(f(D|M_c)\) is the integrated likelihood of model \(M_c\). Let \(\theta_c\) denote the parameter vector of model \(M_c\), with parameter prior \(f(\theta_c|M_c)\); the integrated likelihood of \(D\) in (24) is, then, given by

\[
f(D|M_c) = \int L(D|\theta_c, M_c)f(\theta_c|M_c)d\theta_c
\]

(25)

where \(L(D|\theta_c, M_c)\) is the likelihood function for model \(M_c, c = 1, 2, \ldots, C(=3, \text{in our case}).

B. MCMC Implementation

The integral forms in (24) and (25) cannot be easily computed unless the closed form of the integrated likelihood function is available. In order to implement the BMA for model uncertainty analysis, the MCMC method is developed to generate samples from the parameter posterior distribution \(f(\theta_c|D, M_c)\) through the following procedures, using the software WinBUGS [47]. Then, the \(p\)-quantile at the use conditions can be obtained by (15) from the selected samples.

1) Model Prior Probability \(P(M_c)\): The setting of the model prior probability can be based on either expert knowledge or previous ADT of the same kind of products. In practice, one sets this probability to be uniformly distributed if no such prior information is available, i.e., \(P(M_c) = \frac{1}{C}, c = 1, 2, 3\).

2) Parameter Prior \(f(\theta_c|M_c)\): The parameter vector \(\theta_c\) is \([\alpha_{oc}, \alpha_{1c}, \sigma_c, \gamma_c]\). Here, informative priors are adopted, which allow using available prior information. In fact, considered that high temperature stress levels are expected to result in accelerating the degradation process, that is to say, increasing \(\mu\), it is possible to say that \(\alpha_{1c}\) should be likely greater than zero. As to \(\gamma\), which regulates the degradation trend, a nonlinear fitting with simply \(x = \mu^t\) for each degradation path can provide the necessary prior information. Note that both \(\sigma\) and \(\gamma\) are positive parameters. In fact, \(\sigma\) is the scale coefficient of the standard deviation of the degradation process and \(\gamma\) is the power of the age function \(\Lambda(t) = t^{\gamma}\), that is increasing. Indeed, in the considered unified degradation model, both mean and variance functions have nondecreasing increments, see (1) and (2). Hence, the \(s\)-independent and informative prior is assigned, based on the MLE results \(\theta\), from Section II-C

\[
f(\alpha_{oc}|M_c) \sim f_N(\alpha_{oc}|\bar{\alpha}_{oc}, 0.01)
\]

\[
f(\alpha_{1c}|M_c) \sim f_N(\alpha_{1c}|\bar{\alpha}_{1c}, 0.01)
\]

\[
f(\sigma_c|M_c) \sim f_{\text{Ga}}(\sigma_c|100\mu_c^2, 0.01/\bar{\sigma}_c)
\]

\[
f(\gamma_c|M_c) \sim f_N(\gamma_c|\bar{\gamma}_c, 0.01).
\]

(26)

Herein, the variances of the priors are set to be 0.01 for the study in Sections IV and V. For other cases, the standard error (std) of the unknown parameters from MLE can assist the setting of this value, see Table I. The precision for parameters in WinBUGS is the reciprocal of the setting variance. To choose the prior distributions for \(\alpha_{1c}\) and \(\gamma_c\), we assume them to be normally distributed but ensure their nonnegative properties with \(P(\alpha_{1c} < 0) \approx 0\) and \(P(\gamma_c < 0) \approx 0\). Otherwise, one could use the truncated normal, lognormal or Gamma distributions as alternative choices if the assumptions are invalid.

3) Parameter Posterior \(f(\theta_c|D, M_c)\): If the ADT data \(D\) are obtained, from (8) and (26), the posterior distribution of \(\theta_c\) can be given with the standard Bayes’ theorem, that is

\[
f(\theta_c|D, M_c) \propto f(\theta_c|M_c) \prod_{i=1}^{K} \prod_{j=1}^{n_i} \prod_{k=1}^{m_{ij}} f_{\text{USP}}(x_{ijk}|\alpha_{ijk}, b_{ijk}).
\]

(27)
Through (27), the fully conditions of $\alpha_{0c}, \alpha_{1c}, \sigma_c$, and γ_c can be directly derived, and then a Gibbs sampling strategy can be used to draw parameter samples iteratively with WinBUGS software. The convergence property of the sampling chains can be checked by the Gelman–Rubin index, which is the degree of approximating 1 [47]. Applications can be found in [41] and [48]. When it is converged, a fixed number of samples can be generated from the posterior functions of the parameter vector after a burn-in period (e.g., the first 1000 samples), i.e., $\tilde{\theta}_c = [\tilde{\alpha}_{0c}, \tilde{\alpha}_{1c}, \tilde{\sigma}_c, \tilde{\gamma}_c]$, $i = 1, 2, \ldots, d$, for the following calculations, e.g., $d = 5000$.

Mentioned that parameter of the priors in (26) are calibrated using MLE estimates based on actual data, and then updated on the basis of the same data used to formulate the likelihood in (27), which is not fully Bayesian approach. However, this procedure can produce posteriors that are similar to priors for the calculation of p-quantile lifetime analysis when the prior information is scarce, and provide satisfactory results [26], [49].

4) Model Posterior Probability $P(M_c|D)$: From (24) with $P(M_c) = 1/3$, the model posterior probability is proportional to the integrated likelihood $f(D|M_c)$, which can be approximated with the samples $\tilde{\theta}_c = [\tilde{\alpha}_{0c}, \tilde{\alpha}_{1c}, \tilde{\sigma}_c, \tilde{\gamma}_c]$, $i = 1, 2, \ldots, r$, generated directly from the parameter prior $f(\theta_c|M_c)$ in (26). Then, the model posterior probability is given as

$$P(M_c|D) \propto \frac{1}{r} \sum_{i=1}^{r} L(D|\tilde{\theta}_c).$$

(28)

5) Model Averaging for p-Quantile Lifetime t_p: We at first calculate the model posterior probabilities $P(M_c|D)$ based on (28). Define that $\text{Sum}_c = \frac{1}{r} \sum_{i=1}^{r} L(D|\tilde{\theta}_c)$, $i = 1, 2, \ldots, r, c = 1, 2, 3$. For single model M_c, its p-quantile lifetime inferences t_{pc} can be constructed based on t_{pc} given by substituting $\tilde{\theta}_c$ into (15). After that, the model averaging can be conducted directly based on t_{pc} with the model probability $P(M_c|D)$ according to (23), which allows the analysis for both single model and BMA method simultaneously without generating new parameter samples. An algorithm is given below.

Generate parameter samples $\tilde{\theta}_c$ from (27), $i = 1, 2, \ldots, d$, $c = 1, 2, 3$

For $i = 1$ to d do

- Compute t_{pc}, $c = 1, 2, 3$, according to (15)
- Generate a random number r_i from the uniform distribution [0, 1]
- If $r_i \in [0, P(M_1|D)]$, then $t_{p} = t_{pc}$; else if $r_s \in [P(M_1|D), \sum_{c=1}^{2} P(M_c|D)]$, then $t_{p} = t_{pc}$; otherwise, $t_{p} = t_{p\delta}$

end for

The BMA statistical inferences can be obtained by analyzing the selected t_{pc}, e.g., median values, $(1 - q)\%$ s-credibility intervals. The BMA results can be compared with t_{pc} and also MLEs from Section II-D. From the viewpoint of both standard Bayesian and frequentist approaches, this comparison will further verify that in the case considered in the next Section, the p-quantile lifetime evaluation results will lead to overconfident inferences without accounting for model uncertainty in ADT analysis.

IV. ILLUSTRATIVE EXAMPLE

We use stress relaxation ADT data to illustrate model uncertainty in ADT data analysis and show its influence on p-quantile lifetime evaluation at the use conditions. Stress relaxation is the resistance loss of a component due to a constant strain over time. For instance, the contacts of electrical connectors fail because of the excessive stress relaxation. The data are originated from [50] and listed in [21, Table IV]. Three accelerated temperature stress values have been considered in ADT, i.e., 65, 85, and 100 °C, to collect data for lifetime evaluation at the normal operating temperature of 40°C, see Fig. 1. The electrical connector is said to have failed when the stress relaxation exceeds 30%, i.e., $\omega = 30$.

A. MLE Analysis

In [21], the inverse Gaussian process model is used for ADT modeling and designing optimal test plans without accounting for model uncertainty. Here, the unified degradation model USP(a, b) proposed in Section II-A is used and the MLE results are given in Table I, where the estimated standard errors are computed through the square roots of the diagonal elements of the inverse of the expected Fisher information matrix. Substituting the results into (15) and (22), we can plot the MLE of the quantiles at the use condition and the corresponding 95% s-normal approximation s-confidence intervals with $p = (0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99)$, see Fig. 2(c) and (d) for t_p in normal scale (some data for M_1 are eliminated to guarantee the presentation) and logarithm scale, which can give an intuitive understanding on the differences of lifetime evaluation among the three candidate models. Meanwhile, Fig. 2(a) and (b) presents the PDF and CDF of FPT.
Herein, we also compute the expected and empirical Fisher matrixes to understand the differences between them. For M_1, the values are

$$I(\theta)^{exp}_1 = \begin{pmatrix} 849.9045 & 743.0543 & 0 & 6.3226e3 \\ 743.0543 & 673.8037 & 0 & 5.4793e3 \\ 6.3226e3 & 5.4793e3 & 3.6469e3 & 5.6562e4 \end{pmatrix}$$

and

$$I(\theta)^{emp}_1 = \begin{pmatrix} 849.9045 & 743.0543 & -2.7878e-5 & 6.3226e3 \\ 743.0543 & 672.4577 & -2.7158e-5 & 5.4793e3 \\ -2.7878e-5 & -2.7158e-5 & 2.1816e3 & 3.6469e3 \\ 6.3226e3 & 5.4793e3 & 3.6469e3 & 5.6671e4 \end{pmatrix}$$

respectively. It can be seen that the expected and empirical Fisher matrixes are almost equal, which are also true for M_2 and M_3. Hence, the expected Fisher information matrix is selected to construct the confidence intervals for the p-quantile lifetime.

From Fig. 2(c) and (d), the p-quantiles for model M_1 are larger than the other two models with wider confidence intervals, and the low limit values are even larger than the MLEs of M_2 and M_1. For M_2 and M_3, if the quantiles of interest are at middle quantile ($p = 0.5$), the differences are negligible: $t_{0.5}$ is 7.0036e4 (4.0623e4, 1.2074e5) for M_2 and 6.9066e4 (3.8742e4, 1.2313e5) for M_3. However, the results are very different at extreme quantiles. For instance, the MLE and 95% s-confidence interval of $t_{0.01}$ ($t_{0.99}$) for M_2 are 2.5988e4 (1.8874e5) and (1.6107e4, 4.1932e4) (1.00181e5, 3.5557e5). When it comes to M_3, the results are 2.3457e4 (2.0336e5) and (1.4180e4, 3.8802e4) (1.0313e5, 4.0098e5). In addition, the MLE results for M_3 are smaller than for M_2 at low quantiles ($p < 0.5$). On the contrary, at high quantiles, they are larger than that from M_2.

The above-mentioned analysis has shown that the stochastic model used for ADT analysis can impact the inference results of the p-quantile lifetime. For selecting which model to use, one may use the AIC and choose the model with the lowest AIC value. Given the MLE results in Table I, M_2 would be selected with AIC = 439.8 against M_3 (443.1) and M_1 (458.5). However, such model selection only tells how well a given model fits the data. No information is provided about the influence of model uncertainty on the lifetime evaluation results of interest [26]. It is true that the Gamma process model suits better the stress relaxation data than the other two models. However, the inverse Gaussian process model is artificially chosen in [21] as the underlying degradation model. Such problem may also exist in the other two models for ADT analysis, see [17] and [28]. Hence, model uncertainty should be considered in ADT analysis. For this reason, the BMA method is here used to account for model uncertainty and evaluate its effects on lifetime evaluation.

B. BMA Analysis

Following the procedure in Section III-B, we generated 10 000 samples to compute the posterior probability of each candidate model. The results are $P(M_1|D) = 7.1041e-5$, $P(M_2|D) = 0.8146$, and $P(M_3|D) = 0.1854$. This indicates that the Gamma process model is the best model to represent the stress relaxation ADT data, which is in accordance with...
the results from MLE and AIC. As shown, the contribution of M_1 is negligible with significantly low posterior probability. Hence, the posterior samples of t_0 are computed from M_2 with probability of 0.8146 and from M_3 with probability of 0.1854. For the inferences of quantiles under BMA, the algorithm in Section III-B5 is used and the assigned variances 0.01 of the prior distributions is appropriate to generate prior samples. We plot the middle and extreme quantiles using the ksdensity function in MATLAB, see Fig. 3 for the posterior densities of $t_{0.01}$, $t_{0.50}$, and $t_{0.99}$ under M_2, M_3, and BMA, respectively.

As shown in Fig. 3, the density functions of M_2 and M_3 are different at extreme quantiles, while similar at middle quantile. As expected, most of BMA realizations are from M_2, since M_2 is the best model and, thus, has a larger posterior probability. In order to compare the results from the single model with BMA, we sort the t_{pc}s from M_2, M_3, and t_p's of BMA, and compute the posterior median and 95% s-credibility intervals, as reported in Table II. For the median value, the differences are around 1000 h when $p = 0.01$ and 10 000 h when $p = 0.99$, and about 300 h when $p = 0.50$. The results demonstrate that significant differences exist when choosing the degradation model, especially for extreme quantiles, and that BMA, which provides (compromise) point estimates between those of M_2 and M_3, allows computing confidence intervals that account for such uncertainty. The same is true for the 95% s-credibility intervals. From Table II, we see that the lower and upper limit values of BMA are between those of M_2 and M_3; for instance, the lower limit of BMA when $p = 0.01$ is $1.4331e4$ h, while that from M_2 and M_3 are $1.4297e4$ and $1.4606e4$ h, respectively.

![Fig. 3. Posterior density of (a) $t_{0.01}$, (b) $t_{0.50}$, and (c) $t_{0.99}$ [the solid line is for BMA; the dotted and the dashed lines are for Gamma and inverse Gaussian process models, respectively].](image)

Through the analysis from MLE and BMA in Sections IV-A and IV-B, it can be concluded that ignoring model uncertainty may result in significant differences on the p-quantile lifetime estimated from the obtained ADT data. In the next section, a simulation study is given to show the superiority of BMA.

V. SIMULATION STUDY

In this section, we set up a simulation study to compare the BMA s-credibility intervals with those from single model M_i. For simplicity, the MLE results from Table I are treated as the real values to simulate the degradation paths of stress relaxation under three temperature stress levels. The total sample size of $n = 18$ and 36 is simulated to evaluate the effect of sample size on the lifetime evaluation results. Meanwhile, all samples are equally allocated into the three temperature stress levels. Noted that in the presence of negative increments when the Wiener process model M_1 is used for generating ADT data, we assume $P(M_1 | D) = 1$, and $P(M_2 | D) = P(M_3 | D) = 0$.

The generating process for each degradation path $X(t_{ijk})$ at the ith stress level at the time t_{ijk} (see [21, Table VI]) is as follows:

1. select the model M_i as the working model;
2. generate x_{ijk} from M_i, according to the settings in USP(a, b) from (3)–(5) with the values in Table I, where $\Lambda(t_{ijk}) = t_{ijk} - t_{ijk} - t_{ijk} - t_{ijk};$
3. compute $X(t_{ijk}) = \sum_{k=1}^{n} x_{ijk}$.

During each replication, the true values in Table I are used to generate the ADT data. Then, the MLE estimates $\hat{\theta}$ for the generated data are used to calibrate the priors in (26). Herein, the MLE estimates should be around the true values. Therefore, the assumptions of $P(\alpha_{1c} < 0) \approx 0$ and $P(\gamma_c < 0) \approx 0$ are still applicable to ensure their nonnegative property. For instance, $P(\alpha_{1c} < 0) = 1.9534e-45 \approx 0$, $P(\gamma_0 < 0) = 3.6628e-06 \approx 0$. After that, model M_i and BMA can compute their corresponding 95% s-credibility intervals at each quantile. Also, the s-confidence and s-credibility intervals from model selection via AIC (\hat{M}_{SIC}) and the higher posterior probability (\hat{M}_{p}) are given to compare the performance of BMA with that from both frequentist and Bayesian viewpoints, through the CP and AL on 1000 replications.

With the settings in Table I, the negative increments exist in almost every replication for M_1, which will make M_1 the only suitable model without model uncertainty. Thus, M_2 and M_3 are used to generate ADT data. However, with other settings, M_1

TABLE III

<table>
<thead>
<tr>
<th>p</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>0.70</th>
<th>0.90</th>
<th>0.95</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>M_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 18$</td>
<td>(2.9870e4)</td>
<td>(3.4774e4)</td>
<td>(5.3855e4)</td>
<td>(8.3371e4)</td>
<td>(1.1307e5)</td>
<td>(1.3353e5)</td>
<td>(2.3716e5)</td>
<td>(2.9167e5)</td>
<td>(4.2764e5)</td>
</tr>
<tr>
<td>M_2</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
</tr>
<tr>
<td>M_3</td>
<td>0.774</td>
<td>0.692</td>
<td>0.648</td>
<td>0.543</td>
<td>0.487</td>
<td>0.451</td>
<td>0.411</td>
<td>0.397</td>
<td>0.363</td>
</tr>
<tr>
<td>M_{HP}</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
</tr>
<tr>
<td>M_{1C}</td>
<td>0.907</td>
<td>0.907</td>
<td>0.907</td>
<td>0.907</td>
<td>0.907</td>
<td>0.907</td>
<td>0.907</td>
<td>0.907</td>
<td>0.907</td>
</tr>
<tr>
<td>M_{AL}</td>
<td>(2.7051e4)</td>
<td>(3.601e4)</td>
<td>(4.4983e4)</td>
<td>(6.5799e4)</td>
<td>(8.5977e4)</td>
<td>(9.1256e4)</td>
<td>(1.6630e5)</td>
<td>(2.0048e5)</td>
<td>(2.8371e5)</td>
</tr>
<tr>
<td>M_2</td>
<td>(2.7401e4)</td>
<td>(3.7904e4)</td>
<td>(4.5313e4)</td>
<td>(6.5818e4)</td>
<td>(8.5609e4)</td>
<td>(1.1172e5)</td>
<td>(1.6406e5)</td>
<td>(1.9716e5)</td>
<td>(2.7762e5)</td>
</tr>
<tr>
<td>M_{BMA}</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
</tr>
<tr>
<td>$n = 36$</td>
<td>(2.7175e4)</td>
<td>(3.7853e4)</td>
<td>(4.5347e4)</td>
<td>(6.6589e4)</td>
<td>(8.7260e4)</td>
<td>(1.1465e5)</td>
<td>(1.7024e5)</td>
<td>(2.0581e5)</td>
<td>(2.9267e5)</td>
</tr>
<tr>
<td>M_2</td>
<td>0.917</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
</tr>
<tr>
<td>M_3</td>
<td>0.693</td>
<td>0.561</td>
<td>0.496</td>
<td>0.37</td>
<td>0.305</td>
<td>0.245</td>
<td>0.183</td>
<td>0.17</td>
<td>0.141</td>
</tr>
<tr>
<td>M_{HP}</td>
<td>0.944</td>
<td>0.943</td>
<td>0.942</td>
<td>0.941</td>
<td>0.940</td>
<td>0.939</td>
<td>0.938</td>
<td>0.938</td>
<td>0.938</td>
</tr>
<tr>
<td>M_{1C}</td>
<td>(1.8002e4)</td>
<td>(2.4883e4)</td>
<td>(2.9679e4)</td>
<td>(4.3115e4)</td>
<td>(5.6015e4)</td>
<td>(7.2892e4)</td>
<td>(1.0666e5)</td>
<td>(1.2794e5)</td>
<td>(1.7940e5)</td>
</tr>
<tr>
<td>M_{BMA}</td>
<td>0.945</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>p</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>0.70</th>
<th>0.90</th>
<th>0.95</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>M_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 18$</td>
<td>(2.0569e4)</td>
<td>(4.480e4)</td>
<td>(5.6250e4)</td>
<td>(9.0793e4)</td>
<td>(1.2692e5)</td>
<td>(1.7743e5)</td>
<td>(2.8672e5)</td>
<td>(3.6080e5)</td>
<td>(5.4818e5)</td>
</tr>
<tr>
<td>M_2</td>
<td>0.927</td>
<td>0.928</td>
<td>0.928</td>
<td>0.928</td>
<td>0.928</td>
<td>0.928</td>
<td>0.928</td>
<td>0.928</td>
<td>0.928</td>
</tr>
<tr>
<td>M_3</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
</tr>
<tr>
<td>M_{HP}</td>
<td>0.924</td>
<td>0.924</td>
<td>0.924</td>
<td>0.924</td>
<td>0.924</td>
<td>0.924</td>
<td>0.924</td>
<td>0.924</td>
<td>0.924</td>
</tr>
<tr>
<td>M_{1C}</td>
<td>0.927</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
</tr>
<tr>
<td>M_{BMA}</td>
<td>0.927</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
<td>0.926</td>
</tr>
<tr>
<td>$n = 36$</td>
<td>(2.0000e4)</td>
<td>(3.1393e4)</td>
<td>(3.9677e4)</td>
<td>(5.8259e4)</td>
<td>(7.6628e4)</td>
<td>(1.0131e5)</td>
<td>(1.5241e5)</td>
<td>(1.8554e5)</td>
<td>(2.6835e5)</td>
</tr>
<tr>
<td>M_2</td>
<td>0.889</td>
<td>0.912</td>
<td>0.912</td>
<td>0.912</td>
<td>0.912</td>
<td>0.912</td>
<td>0.912</td>
<td>0.912</td>
<td>0.912</td>
</tr>
<tr>
<td>M_3</td>
<td>0.939</td>
<td>0.939</td>
<td>0.939</td>
<td>0.939</td>
<td>0.939</td>
<td>0.939</td>
<td>0.939</td>
<td>0.939</td>
<td>0.939</td>
</tr>
<tr>
<td>M_{HP}</td>
<td>(1.8593e4)</td>
<td>(2.1678e4)</td>
<td>(2.5713e4)</td>
<td>(3.6908e4)</td>
<td>(4.7561e4)</td>
<td>(6.1358e4)</td>
<td>(8.6604e4)</td>
<td>(1.0571e5)</td>
<td>(1.4663e5)</td>
</tr>
<tr>
<td>M_{1C}</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
</tr>
<tr>
<td>M_{BMA}</td>
<td>(1.6373e4)</td>
<td>(2.2464e4)</td>
<td>(2.6761e4)</td>
<td>(3.8954e4)</td>
<td>(5.9885e4)</td>
<td>(6.776e4)</td>
<td>(9.2955e4)</td>
<td>(1.2014e5)</td>
<td>(1.7168e5)</td>
</tr>
</tbody>
</table>

could be used as given in [28]. The results are listed in Tables III and IV, with the model M_5 being M_2 and M_3, respectively.

From the simulation study, some results and considerations are shown below.

1) If M_2 is the true model, the CPs of the intervals are lower than 0.8 with model mis-specification of M_3. With the larger values of p, the performance of M_3 is much worse, even less than 0.2 when increasing the sample size. Maybe Fig. 2 can give some explanations: The differences between M_2 and M_3 become wider with larger values of p. When choosing M_3 instead of M_2, such differences become significant that the confidence intervals of M_3 fails to capture the true parameter values of M_2. Hence, the problem of model mis-specification could become serious.

2) If M_3 is the true model, the mis-specification model M_2 performs well with CPs around 0.9 at small sample sizes. From Table IV, the CPs for wrong model M_2 are even
better than that for M_3 with narrower ALs when $p \leq 0.5$ in the case of $n = 18$. The reasons are from the performance of MLE used to calibrate the priors, the approximation of CP and AL values obtained via Monte Carlo simulation and also the physical similarity between this two models as discussed in [20]. However, when increasing the sample size as $n = 36$, the problem of mis-specification becomes serious compared with $n = 18$.

3) Under different scenarios, model M_1 can give satisfactory CPs over 0.84. The reason is that M_1 regards the monotonous degradation paths as if both increasing and decreasing increments exist. Hence, the uncertainty of degradation path (or the property of Wiener process) leads to wider ALs of M_1 than the correct model, and are more likely to capture the real values.

4) From the CPs and ALs in Tables III and IV, BMA performs better than M_{ADT}, and slightly better than M_{BP} with wider intervals that are the compromise results of the candidate models M_s. In addition, BMA has narrower intervals than that from M_1. These results demonstrate the superiority of the BMA method on modeling model uncertainty in ADT analysis.

VI. CONCLUSION

In traditional ADT analysis, stochastic process models, i.e., Wiener, Gamma and inverse Gaussian processes, are used for degradation modeling and lifetime evaluation of highly reliable and long lifespan products. In this paper, we analyze the effect of stochastic degradation model uncertainty on the p-quantile lifetime at the use conditions, through the BMA method. Analyzing stress relaxation ADT data, we have highlighted that the differences on the p-quantile lifetime estimated by the different models can be significant, especially at extreme quantiles. By a simulation study, we have shown that model uncertainty can be significant and that the BMA method is a good way to treat it, giving compromise s-credibility intervals with highest CP at each quantile.

The main original contributions of this work are as follows.

1) The importance of the stochastic degradation model for ADT data analysis is highlighted and the case study of stress relaxation ADT data is used to demonstrate that significantly different results in lifetime evaluation at the use conditions can be obtained.

2) The problem of degradation model uncertainty has been effectively dealt with by the BMA method, giving satisfactory p-quantile lifetime evaluation results.

The main focus of this paper has been on analyzing the degradation model uncertainty on the p-quantile lifetime evaluation in constant stress ADT data analysis. Future work may extend it to the ADT analysis under other stress profiles, e.g., step-stress and progressive stress. Meanwhile, it is recognized that also model uncertainty in design ADT plans is worth consideration for future work.

APPENDIX A

FISHER INFORMATION MATRIX $I(\theta_r)$

The first and second derivatives of μ_i with respect to α_0 and α_1 are $\frac{\partial \mu_i}{\partial \alpha_0} = \frac{\partial^2 \mu_i}{\partial \alpha_0^2} = \mu_i = \exp(\alpha_0 + \alpha_1 s_i)$, $\frac{\partial^2 \mu_i}{\partial \alpha_0 \partial \alpha_1} = \mu_i s_i = \exp(\alpha_0 + \alpha_1 s_i)$ s_i^2. When $\Lambda(t) = \Gamma$, $\Lambda_{ij} = \Gamma_{ij} - \Gamma_{ij}(k-1)$, then $\frac{\partial \Lambda_{ij}}{\partial \alpha} = \Gamma_{ij} \ln x_{ij} - \Gamma_{ij(k-1)} \ln x_{ij(k-1)}$.

For the Wiener process model, the derivation of elements $I(\theta_1)$ is given below. Since $E[x_{ij}t] = \mu_{ij}$ and $E[(x_{ij} - \mu_{ij})^2] = \sigma^2_{ij}$, the elements are given in (29)–(38).

For the Gamma process model, the derivation of elements $I(\theta_2)$ is given below. Since $E[x_{ij}t] = \mu_{ij}$ and $E[\ln x_{ij}t] = \psi(\frac{\mu_{ij}}{\mu} - 2) + \ln \frac{\mu_{ij}}{\mu}$, the elements are given in (39)–(48), where $\psi(\cdot)$ and $\psi(\cdot)$, respectively, are the digamma and trigamma functions.

For the inverse Gaussian process model, the derivation of elements $I(\theta_3)$ is as below. Since $E(x_{ij}t) = \mu_{ij}$ and $E[\frac{1}{x_{ij}t}] = \frac{1}{\mu_{ij}} + \frac{\sigma^2_{ij}}{\mu_{ij}^2}$ [52], the elements are given in (49)–(58):

\[
E \left[- \frac{\partial^2 l(\theta_1 | M_1, D)}{\partial \alpha_0^2} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \frac{\mu_{ij}^2 \Lambda_{ij}}{\sigma^2} \quad (29)
\]
\[
E \left[- \frac{\partial^2 l(\theta_1 | M_1, D)}{\partial \alpha_1^2} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \frac{\mu_{ij}^2 S_{ij} \Lambda_{ij}}{\sigma^2} \quad (30)
\]
\[
E \left[- \frac{\partial^2 l(\theta_1 | M_1, D)}{\partial \alpha_0 \partial \alpha_1} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \left(\frac{1}{2 \Lambda_{ij}^2} + \frac{\mu_{ij}^2}{\sigma^2 \Lambda_{ij}} \right) \quad (31)
\]
\[
E \left[- \frac{\partial^2 l(\theta_1 | M_1, D)}{\partial \gamma^2} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \left(\frac{1}{2 \Lambda_{ij}^2} + \frac{\mu_{ij}^2}{\sigma^2 \Lambda_{ij}} \right) \quad (32)
\]
\[
E \left[- \frac{\partial^2 l(\theta_1 | M_1, D)}{\partial \alpha_0 \partial \sigma^2} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \frac{\mu_{ij}^2 S_{ij} \Lambda_{ij}}{\sigma^2} \quad (33)
\]
\[
E \left[- \frac{\partial^2 l(\theta_1 | M_1, D)}{\partial \sigma^2 \partial \alpha_0} \right] = 0 \quad (34)
\]
\[
E \left[- \frac{\partial^2 l(\theta_1 | M_1, D)}{\partial \alpha_1 \partial \sigma^2} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \frac{\mu_{ij}^2 S_{ij} \partial \Lambda_{ij}}{\sigma^2} \quad (35)
\]
\[
E \left[- \frac{\partial^2 l(\theta_1 | M_1, D)}{\partial \alpha_0 \partial \gamma} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \frac{\mu_{ij}^2 S_{ij} \partial \Lambda_{ij}}{\sigma^2} \quad (36)
\]
\[
E \left[- \frac{\partial^2 l(\theta_1 | M_1, D)}{\partial \alpha_1 \partial \gamma} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \frac{\mu_{ij}^2 S_{ij} \partial \Lambda_{ij}}{\sigma^2} \quad (37)
\]
\[E \left[\frac{\partial^2 l(\theta_1|M_1, D)}{\partial \sigma^2 \partial \gamma} \right] = E \left[-\frac{\partial^2 l(\theta_1|M_1, D)}{\partial \gamma \partial \sigma^2} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{m_{ijk}} \frac{1}{2\sigma^2} \frac{\partial \Lambda_{ijk}}{\partial \gamma} \quad (38) \]

\[E \left[\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \sigma^2 \partial \gamma} \right] = E \left[-\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \gamma \partial \sigma^2} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{m_{ijk}} \psi_i \left(\frac{\mu_i^2 \Lambda_{ijk}}{\sigma^2} \right) \frac{4\mu_i^4 \Lambda_{ijk}^2}{\sigma^4} - 3\mu_i^2 \Lambda_{ijk} \frac{\partial \Lambda_{ijk}}{\partial \gamma} \quad (39) \]

\[E \left[\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \sigma^2 \partial \gamma} \right] = E \left[-\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \gamma \partial \sigma^2} \right] = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{m_{ijk}} 4\mu_i^4 s_i^2 \Lambda_{ijk}^2 \frac{\sigma^2}{\sigma^4} - 3\mu_i^2 s_i \Lambda_{ijk} \frac{\partial \Lambda_{ijk}}{\partial \gamma} \quad (40) \]

\[E \left[\frac{\partial^2 l(\theta_3|M_3, D)}{\partial \sigma^2 \partial \gamma} \right] = E \left[-\frac{\partial^2 l(\theta_3|M_3, D)}{\partial \gamma \partial \sigma^2} \right] = 9 \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{m_{ijk}} \left(\frac{\mu_i^2 \Lambda_{ijk}}{\sigma^2} \right) \left(\frac{\mu_i^4 \Lambda_{ijk}^2}{\sigma^2} \right) - \frac{\mu_i^2 \Lambda_{ijk}^2 \partial \Lambda_{ijk}}{\partial \gamma} \quad (41) \]

\[E \left[\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \sigma^2 \partial \gamma} \right] = E \left[-\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \gamma \partial \sigma^2} \right] = 9 \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{m_{ijk}} \left(\frac{\mu_i^2 \Lambda_{ijk}}{\sigma^2} \right) \left(\frac{\mu_i^4 \Lambda_{ijk}^2}{\sigma^2} \right) - \frac{\mu_i^2 \Lambda_{ijk}^2 \partial \Lambda_{ijk}}{\partial \gamma} \quad (42) \]

\[E \left[\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \sigma^2 \partial \gamma} \right] = E \left[-\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \gamma \partial \sigma^2} \right] = 9 \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{m_{ijk}} \left(\frac{\mu_i^2 \Lambda_{ijk}}{\sigma^2} \right) \left(\frac{\mu_i^4 \Lambda_{ijk}^2}{\sigma^2} \right) - \frac{\mu_i^2 \Lambda_{ijk}^2 \partial \Lambda_{ijk}}{\partial \gamma} \quad (43) \]

\[E \left[\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \sigma^2 \partial \gamma} \right] = E \left[-\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \gamma \partial \sigma^2} \right] = 9 \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{m_{ijk}} \left(\frac{\mu_i^2 \Lambda_{ijk}}{\sigma^2} \right) \left(\frac{\mu_i^4 \Lambda_{ijk}^2}{\sigma^2} \right) - \frac{\mu_i^2 \Lambda_{ijk}^2 \partial \Lambda_{ijk}}{\partial \gamma} \quad (44) \]

\[E \left[\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \sigma^2 \partial \gamma} \right] = E \left[-\frac{\partial^2 l(\theta_2|M_2, D)}{\partial \gamma \partial \sigma^2} \right] = 9 \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{m_{ijk}} \left(\frac{\mu_i^2 \Lambda_{ijk}}{\sigma^2} \right) \left(\frac{\mu_i^4 \Lambda_{ijk}^2}{\sigma^2} \right) - \frac{\mu_i^2 \Lambda_{ijk}^2 \partial \Lambda_{ijk}}{\partial \gamma} \quad (45) \]
E \left[\frac{\partial^2 l(\theta_3|M_3, D)}{\partial \alpha_0 \partial \gamma} \right] = E \left[- \frac{\partial^2 l(\theta_3|M_3, D)}{\partial \gamma^2 \partial \alpha_0} \right]

= \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \left(\frac{\mu^2}{\sigma^2} + \frac{3}{\Lambda_{ijk}} \right) \frac{\partial \Lambda_{ijk}}{\partial \gamma}

(55)

E \left[\frac{\partial^2 l(\theta_3|M_3, D)}{\partial \alpha_1 \partial \sigma^2} \right] = E \left[- \frac{\partial^2 l(\theta_3|M_3, D)}{\partial \sigma^2 \partial \alpha_1} \right]

= \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \frac{3s_i}{2 \sigma^2} \frac{\partial \Lambda_{ijk}}{\partial \gamma}

(56)

E \left[\frac{\partial^2 l(\theta_3|M_3, D)}{\partial \alpha_1 \partial \gamma} \right] = E \left[- \frac{\partial^2 l(\theta_3|M_3, D)}{\partial \gamma \partial \alpha_1} \right]

= \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m_{ij}} \frac{1}{\sigma^2} \frac{\partial \Lambda_{ijk}}{\partial \gamma}

(57)

= \frac{1}{\gamma}(2^{\gamma-1}) \left(\frac{\sigma z_p}{\exp(\alpha_0)} \right) + B^{-1/2} \frac{\sigma^2 z_p^2}{2 \exp(2\alpha_0)}

(59)

\frac{\partial \tilde{t}_p}{\partial \alpha_0} = 0

(60)

\frac{\partial \tilde{t}_p}{\partial \alpha_1} = \frac{1}{\gamma} A^{2/\gamma-1} \left(\frac{z_p}{2 \exp(\alpha_0) \sigma} \right) + B^{-1/2} \frac{z_p^2}{4 \exp(2\alpha_0)}

(61)

\frac{\partial \tilde{t}_p}{\partial \sigma^2} = - \frac{2 \ln A}{\gamma^2} A^{2/\gamma}.

(62)

APPENDIX B

FIRST DERIVATIVE OF p-QUANTILE LIFETIME

In (15), the first derivative of p-quantile lifetime \(t_p \) with respect to the parameters is \(\nabla t_p = \frac{\partial t_p}{\partial \alpha_0}, \frac{\partial t_p}{\partial \alpha_1}, \frac{\partial t_p}{\partial \sigma^2}, \frac{\partial t_p}{\partial \gamma} \), whose elements are given in (59)-(62), where \(A = B^2 / 4 \sqrt{\omega \sigma^2 / \exp(3\alpha_0)}, B = \sqrt{\ln A / \sigma^2 + z_p^2} \).

REFERENCES

LIU et al.: MODEL UNCERTAINTY IN ACCELERATED DEGRADATION TESTING ANALYSIS

Le Liu received the Bachelor’s degree in quality and reliability engineering and the Ph.D. degree in systems engineering from Beihang University, Beijing, China, in 2012 and 2017, respectively. He is currently a Reliability Engineer at Huawei Institute in Beijing, China. His current research interests include reliability tests and Prognostics and Health Management (PHM).

Xiao-Yang Li received the Ph.D. degree in aerospace systems engineering from Beihang University, Beijing, China, in 2007. She is currently an Associate Professor in the School of Reliability and Systems Engineering, Beihang University. Her research interests include accelerated testing, prediction technology, and imprecise probability modeling.

Enrico Zio (M’06–SM’09) received the M.Sc. degree in nuclear engineering from the Politecnico di Milano, Milano, Italy, in 1991, the M.Sc. degree in mechanical engineering from the University of California, Los Angeles, Los Angeles, CA, USA, in 1995, and the Ph.D. degree in nuclear engineering from Politecnico di Milano and Massachusetts Institute of Technology, Cambridge, MA, USA, in 1996 and 1998, respectively. He is currently a Director of the Chair on Systems Science and the Energetic Challenge of the Foundation Electricite de France, CentraleSupelec, Universite Paris-Saclay, Paris, France, a Full Professor at Politecnico di Milano, an Adjunct Professor at the University of Stavanger, Stavanger, Norway, City University of Hong Kong, Kowloon Tong, Hong Kong, Beihang University, Beijing, China, Wuhan University, Hubei, China, and the Co-Director of the Center of Resilience and Safety for Critical Infrastructures, Beijing, China. His research focuses on the modeling of the failure–repair–maintenance behavior of components and complex systems, for their reliability, maintainability, prognostics, safety, vulnerability, and security analysis, and on Monte Carlo simulation methods, soft computing techniques, and optimization heuristics.

Rui Kang received the Bachelor’s and Master’s degrees in electrical engineering from Beihang University, Beijing, China, in 1987 and 1990, respectively. He is currently a Distinguished Professor in the School of Reliability and Systems Engineering, Beihang University, Beijing, China. His main research interests include reliability and resilience for complex system and modeling epistemic uncertainty in reliability and maintainability. Prof. Kang is currently an Associate Editor of the IEEE TRANSACTIONS ON RELIABILITY, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, and Chinese Journal of Aeronautics, and he is the founder of the China Prognostics and Health Management Society.

Tong-Min Jiang received the Master’s degree in reliability engineering from Beihang University, Beijing, China, in 1990. He is currently an Eminent Professor in the School of Reliability and Systems Engineering, Beihang University. His research interests include reliability testing and environment engineering of product.