Markov Reliability and Availability Analysis

Enrico Zio

enrico.zio@polimi.it
General Framework
General Framework

SYSTEM

Component 1
- Failed
- Operating
- Hot standby...
- Degraded

Component 2
- Failed
- Operating
- Degraded...
- Partially failed

Component N_c
- Failed
- Operating
- Cold standby...
- Maintenance

Random transition at $t = t_1$
Random transition at $t = t_2$

Stochastic process of system evolution

Under specified conditions:

= MARKOV PROCESS
Markov Processes: Basic Elements
The system can occupy a **finite** or **countably infinite** number N of states.

Set of possible states $U = \{0, 1, 2, \ldots, N\}$

State-space of the random process
Markov Processes: basic elements—the system states

• The states are:
 o **mutually exclusive** → the system must be *only* in one state at each time
 o **exhaustive** → the system must be in one state at all times

• Example:

Set of possible states $U = \{0, 1, 2, 3\}$

- Mutually exclusive: $P(\text{State} = i \cap \text{State} = j) = 0$, if $i \neq j$
- Exhaustive: $P(U) = P(\text{State} = 0 \cup \text{State} = 1 \cup \text{State} = 2 \cup \text{State} = 3)$
 $$= P(\text{State} = 0) + P(\text{State} = 1) + P(\text{State} = 2) + P(\text{State} = 3) = 1$$
• **Transitions** from one state to another occur **stochastically** (i.e., randomly in time)

![Diagram of Markov Processes](image)

- Random transition at time $t = t_1$
- Random transition at time $t = t_2 > t_1$
- Random transition at time $t = t_3 > t_2$
The random process of system transition in time can be described by an integer random variable $X(t)$:

$$X(t) = 5 \rightarrow \text{the system occupies state number 5 at time } t$$

The stochastic process may be observed at:

- **Discrete times** \(\Rightarrow\) **DISCRETE-TIME FINITE-STATE MARKOV CHAIN**

- **Continuously** \(\Rightarrow\) **CONTINUOUS-TIME FINITE-STATE MARKOV PROCESS**
Discrete-Time Finite-State Markov Chain (DTFSMC)
The conceptual model: discrete times

- The stochastic process is **observed** at **discrete** times

\[\Delta t(2) = t_2 - t_1 \quad \Delta t(4) = t_4 - t_3 \]

0 \quad t_1 \quad t_2 \quad t_3 \quad t_4 \quad \ldots \quad t_n \quad \ldots \quad T_m \quad \rightarrow \quad t

\[t_n = t_{n-1} + \Delta t(n) \]

- **Hypotheses:**
 - The time interval \(\Delta t(n) \) is **small** such that **only one** event (i.e., stochastic transition) can occur within it
 - For simplicity, \(\Delta t(n) = \Delta t = \text{constant} \)
The random process of system transition in time is described by an integer random variable $X(\cdot)$

- $X(n) := \text{system state at time } t_n = n\Delta t$
 - $X(3) = 5$: the system occupies state 5 at time t_3

OBJECTIVE:
Compute the probability that the system is in a given state at a given time, for all possible states and times

$$P[X(n) = j], n=1, 2, \ldots, N_{\text{time}}, j=0,1,\ldots,N$$
Objective:

\[P[X(n) = j], n = 1, 2, ..., N_{\text{time}}, j = 0, 1, ..., N \]

What do we need?
The conceptual model: the Markov assumption

In general for stochastic processes:
• the probability of a future state of the system usually depends on its entire life history

\[P[X(n+1) = j] = P[X(n+1) = j \mid X(0) = x_0, X(1) = x_1, X(2) = x_2, \ldots, X(n) = x_n] \]

In Markov Processes:
• the probability of a future state of the system only depends on its present state

\[P[X(n+1) = j \mid X(0) = x_0, X(1) = x_1, X(2) = x_2, \ldots, X(n) = x_n] = P[X(n+1) = j \mid X(n) = x_n] \]

THE PROCESS HAS “NO MEMORY”
The conceptual model: the transition probabilities

- **Transition probability** that the system in state i at time t_m moves to state j at time t_n

\[
p_{ij}(m, n) = P[X(n) = j \mid X(m) = i], \quad n > m \geq 0
\]

\[i = 0, 1, 2, \ldots, N, \quad j = 0, 1, 2, \ldots, N\]
The conceptual model: properties of the transition probabilities (1)

1. Transition probabilities $p_{ij}(m, n)$ are larger than or equal to 0

$$p_{ij}(m, n) \geq 0, \quad n > m \geq 0 \quad i = 0, 1, 2, \ldots, N, j = 0, 1, 2, \ldots, N$$

(definition of probability)

2. Transition probabilities must sum to 1

$$\sum_{all\ j} p_{ij}(m, n) = \sum_{j=0}^{N} p_{ij}(m, n) = 1, \ n > m \geq 0 \quad i = 0, 1, 2, \ldots, N$$

(the set of states is exhaustive)

Starting from $i = 1$, the system either remains in $i = 1$ or it goes somewhere else, i.e., to $j = 0$ or 2 or 3
The conceptual model: properties of the transition probabilities (2)

3. \(p_{ij}(m,n) = \sum_k p_{ik}(m,r)p_{kj}(r,n) \quad i = 0,1,2,\ldots, N, j = 0,1,2,\ldots, N \)

\[
p[X(n) = j, X(m) = i] = \sum_k p[X(n) = j, X(r) = k, X(m) = i] \quad \text{(theorem of total probability)}
\]

\[
\downarrow \text{conditional probability}
\]

\[
= \sum_k p[X(n) = j \mid X(r) = k, X(m) = i]P[X(r) = k, X(m) = i]
\]

\[
\downarrow \text{Markov assumption}
\]

\[
= \sum_k p[X(n) = j \mid X(r) = k]P[X(r) = k, X(m) = i]
\]

\[
p_{ij}(m,n) = P[X(n) = j \mid X(m) = i] = \frac{P[X(n) = j, X(m) = i]}{P[X(m) = i]} \quad \text{(conditional probability)}
\]

\[
\downarrow \text{formula above}
\]

\[
= \sum_k p[X(n) = j \mid X(r) = k] \frac{P[X(r) = k, X(m) = i]}{P[X(m) = i]}
\]

\[
\downarrow \text{conditional probability}
\]

\[
= \sum_k P[X(n) = j \mid X(r) = k]P[X(r) = k \mid X(m) = i] = \sum_k p_{kj}(r,n)p_{ik}(m,r)
\]
The conceptual model: stationary transition probabilities

- If the **transition probability** $p_{ij}(m, n)$ depends on the **interval** $(t_n - t_m)$ and not on the **individual times** t_m and t_n, then
 - the **transition probabilities** are **stationary**
 - the **Markov process** is **homogeneous in time**

 k time steps

 $p_{ij}(m, n) = p_{ij}(m, m + (n - m)) = p_{ij}(m, m + k) = P[X(m + k) = j \mid X(m) = i]$

 $= P[X(k) = j \mid X(0) = i]$

 $= p_{ij}(k), \quad k \geq 0 \quad i = 0, 1, 2, \ldots, N, j = 0, 1, 2, \ldots, N$
The conceptual model: one-step stationary transition probabilities

We need to determine the **stationary** transition probabilities at the k-th time step

$$p_{ij}(k), k \geq 0$$

We need to know **only** the stationary **one-step** transition probabilities

$$p_{ij}(1) = p_{ij}$$

$(i = 0, 1, 2, \ldots, N, j = 0, 1, 2, \ldots, N)$

Markov assumption (see back-up slides…)

Francesco Cannarile & Enrico Zio
The conceptual model: the transition probability matrix

Properties:

- \(\dim(A) = (N + 1) \times (N + 1) \)
- \(0 \leq p_{ij} \leq 1, \forall i, j \in \{0, 1, 2, \ldots, N\} \) (all elements are probabilities)
- Only \((N+1)xN\) elements need to be known
- \(\sum_{j=0}^{N} p_{ij} = 1, i = 0, 1, 2, \ldots, N \) (the set of states is exhaustive)

\[
A = \begin{pmatrix}
0 & 1 & \ldots & N \\
0 & p_{00} & p_{01} & \ldots & p_{0N} \\
1 & p_{10} & p_{11} & \ldots & p_{1N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
N & p_{N0} & p_{N1} & \ldots & p_{NN}
\end{pmatrix}
\]

is a Stochastic Matrix
• Given the **stationary one-step** transition probabilities P_{ij} ($i = 0, 1, 2, \ldots, N, j = 0, 1, 2, \ldots, N$)

Go back to the **OBJECTIVE**:

Compute $P[X(n) = j], n = 1, 2, \ldots, N_{time}, j = 0, 1, \ldots, N$
Unconditional state probabilities (1)

1. Compute the probability that the system is in a given state at a given time, for all possible states and times

$$P[X(n) = j] = P_j(n), n = 1, 2, ..., N_{time}, j = 0, 1, ..., N$$

2. Introduce the row vector:

$$\underline{P}(n) = [P_0(n) P_1(n) ... P_j(n) ... P_N(n)] = \text{probabilities of the system being in state } 0, 1, 2, ..., N \text{ at the } n\text{-th time step}$$

3. Initialize the vector $\underline{P}(n)$ at time step $n = 0$:

$$\underline{P}(0) = \underline{C} = [C_0 \ C_1 ... C_j ... C_N]$$
Unconditional state probabilities (2)

\[P_j(1) = P\left[X(1) = j \right] \]

\[= \sum_{i=0}^{N} P\left[X(1) = j \mid X(0) = i \right] \cdot P\left[X(0) = i \right] \]

\[= \sum_{i=0}^{N} p_{ij}C_i = p_{0j} \cdot C_0 + p_{1j} \cdot C_1 + p_{2j} \cdot C_2 + \ldots + p_{Nj} \cdot C_N, \]

with \(j = 0, 1, 2, \ldots, N \)

Using Matrix Notation:

\[\underline{P}(1) = \underline{C} \cdot \underline{A} \]
Unconditional state probabilities (3)

• At the second time step \(n = 2 \):

\[
P_j(2) = P\left[X(2) = j \right]
\]

\[
= \sum_{k=0}^{N} P\left[X(2) = j \mid X(1) = k \right] \cdot P\left[X(1) = k \right]
\]

\[
= \sum_{k=0}^{N} p_{kj} \cdot p_k(1)
\]

\[
= P_0(1) \cdot p_{0j} + P_1(1) \cdot p_{1j} + P_2(1) \cdot p_{2j} + \ldots + P_N(1) \cdot p_{Nj},
\]

with \(j = 0, 1, 2, \ldots, N \)

FUNDAMENTAL EQUATION
OF THE HOMOGENEOUS
DISCRETE-TIME DISCRETE-STATE
MARKOV PROCESS

\[
P(2) = P(1) \cdot A = (CA)A = CA^2
\]

Proceeding in the same recursive way…

\[
P(n) = P(0) \cdot A^n = C \cdot A^n
\]
Multi-step transition probabilities (1)

FUNDAMENTAL EQUATION

\[P(n) = P(0) \cdot A^n = C \cdot A^n \]

Define:

\[A^n = \begin{pmatrix}
 p_{00}(n) & p_{01}(n) & \cdots & p_{0N}(n) \\
 p_{10}(n) & p_{11}(n) & \cdots & p_{1N}(n) \\
 \vdots & \vdots & \ddots & \vdots \\
 p_{N0}(n) & p_{N1}(n) & \cdots & p_{NN}(n)
\end{pmatrix} \]

\[n \text{-th step transition probability} \]

\[p_{ij}(n) = P[X(n) = j \mid X(0) = i] \]

probability of arriving in state \(j \) after \(n \) steps given that the initial state was \(i \)
EXAMPLE WITH $N = 2$ STATES AND $n = 2$ time steps

$$A = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} \quad (i = 0, 1, j = 0, 1)$$

$$A^2 = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} \cdot \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} = \begin{pmatrix} p_{00} \cdot p_{00} + p_{01} \cdot p_{10} & p_{00} \cdot p_{01} + p_{01} \cdot p_{11} \\ p_{10} \cdot p_{00} + p_{11} \cdot p_{10} & p_{10} \cdot p_{01} + p_{11} \cdot p_{11} \end{pmatrix}$$

WHAT IS THE “PHYSICAL” MEANING?
Multi-step transition probabilities (3)

\[p_{ij}(n) = P[X(n) = j | X(0) = i] \]

\[p_{01}(2) = p_{00} \cdot p_{01} + p_{01} \cdot p_{11} \]

\[p_{00}(2) = p_{00} \cdot p_{00} + p_{01} \cdot p_{10} \]

\[p_{ij}(n) \] is the sum of the probabilities of all trajectories with length \(n \)
which originate in state \(i \) and end in state \(j \)
Example 1: wet and dry days in a town (1)

- Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES
State 1: dry day
State 2: wet day

DISCRETE TIME
Time step = 1 day

TRANSITION MATRIX

\[
A = \begin{pmatrix}
0.8 & 0.2 \\
0.5 & 0.5 \\
\end{pmatrix}
\]

MARKOV DIAGRAM

Question: If today the weather is dry, what is the probability that it will be **dry two days from now**?
Example 1: wet and dry days in a town (2)

\[
A = \begin{pmatrix}
 \text{dry} & \text{wet} \\
 0.8 & 0.2 \\
 0.5 & 0.5
\end{pmatrix}
\]

Initial condition: today is dry
\[
C = [1 \ 0]
\]

At step \(n \):
\[
P(n) = P(0) \cdot A^n = C \cdot A^n
\]
\[
P(2) = P(0) \cdot A^2 = C \cdot A^2
\]

\[
P(2) = [1 \ 0] \cdot \begin{pmatrix}
 0.8 & 0.2 \\
 0.5 & 0.5
\end{pmatrix} \cdot \begin{pmatrix}
 0.8 & 0.2 \\
 0.5 & 0.5
\end{pmatrix} = [0.74 \ 0.26]
\]

Probability that it will be dry 2 days from now = \(P_1(2) = 0.74 \)
Solution to the fundamental equation
Solution to the fundamental equation (1)

\[
\begin{cases}
P(n) = P(0)A^n \\
P(0) = C
\end{cases}
\]

SOLVE THE ASSOCIATED EIGENVALUE PROBLEM

i) Set the eigenvalue problem \(V \cdot A = \omega \cdot V \)

ii) Write the homogeneous form \(V \cdot (A - \omega \cdot I) = 0 \)

iii) Find non-trivial solutions by setting \(\det(A - \omega \cdot I) = 0 \)

iv) From \(\det(A - \omega \cdot I) = 0 \) compute the eigenvalues \(\omega_j, j = 0, 1, \ldots, N \)

v) Set the \(N \) eigenvalue problems \(V_j \cdot A = \omega_j \cdot V_j \) \(j = 0, 1, \ldots, N \)

vi) From \(V_j \cdot A = \omega_j \cdot V_j \) compute the eigenvectors \(V_j, j = 0, 1, \ldots, N \)
The eigenvectors \(V_j \) span the \((N + 1)\)-dimensional space and can be used as a basis to write any \((N + 1)\)-dimensional vector as a linear combination of them.

\[
P(n) = \sum_{j=0}^{N} \alpha_j \cdot V_j \quad \text{AND} \quad C = \sum_{j=0}^{N} c_j \cdot V_j
\]

We need to find the coefficients \(\alpha_j \) AND \(c_j, j = 0, 1, ..., N \).
Solution to the fundamental equation (3)

- **Find the coefficients** $c_j, j = 0, 1, \ldots, N$ for $C = \sum_{j=0}^{N} c_j \cdot V_j$

- Solve the eigenvalue problem for
 \[
 \begin{cases}
 P(n) = P(0)A^n \\
 P(0) = C
 \end{cases}
 \quad (\omega_j, V_j), j = 0, \ldots, N
 \]

a) Since eigenvectors are orthonormal $< V_i, V_j > = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$

b) Multiply the left- and right-hand sides of $C = \sum_{j=0}^{N} c_i V_i$ by V_j

\[
< C, V_j > = \sum_{j=0}^{N} c_i < V_i, V_j > = c_j
\]

\[
c_j = < C, V_j >
\]
Solution to the fundamental equation (4)

- Find the coefficients α_j, $j = 0, 1, ..., N$ for $P(n) = \sum_{j=0}^{N} \alpha_j \cdot V_j$

- Use $P(n) = \sum_{j=0}^{N} \alpha_j \cdot V_j$, $C = \sum_{j=0}^{N} c_j \cdot V_j$ and $P(n) = C A^n$

a) Substitute $C = \sum_{j=0}^{N} c_j \cdot V_j$ into $P(n) = C A^n$ to obtain $P(n) = \left(\sum_{j=0}^{N} c_j V_j \right) \cdot A^n$

b) Set $P(n) = \sum_{j=0}^{N} \alpha_j \cdot V_j = C \cdot A^n = \left(\sum_{j=0}^{N} c_j V_j \right) \cdot A^n$
Solution to the fundamental equation (5)

c) Multiply $V_j \cdot A = \omega_j \cdot V_j$ by A to obtain $V_j \cdot A \cdot A = \omega_j \cdot V_j \cdot A$

Since $V_j \cdot A = \omega_j \cdot V_j$ then $V_j \cdot A^2 = \omega_j \cdot \omega_j \cdot V_j = \omega_j^2 \cdot V_j$

• • • (proceeding in the same recursive way)

$$V_j \cdot A^n = \omega_j^n \cdot V_j$$

d) Substitute $V_j \cdot A^n = \omega_j^n \cdot V_j$ into $P(n) = \sum_{j=0}^{N} \alpha_j \cdot V_j = C \cdot A^n = \sum_{j=0}^{N} c_j \cdot V_j \cdot A^n$

$$\sum_{j=0}^{N} \alpha_j \cdot V_j = \sum_{j=0}^{N} c_j \cdot \omega_j^n \cdot V_j$$

$$\alpha_j = c_j \cdot \omega_j^n$$
Quantity of Interest
Steady state probabilities

- **Steady state probabilities** π_j: probability of the system being in state j asymptotically

- **TWO ALTERNATIVE APPROACHES:**

 1) Since $\omega_0 = 1$ and $|\omega_j| < 1, j = 1, 2, \ldots, N$

 AT STEADY STATE: $\lim_{n \to \infty} P(n) = \lim_{n \to \infty} \sum_{j=0}^{N} \alpha_j \cdot V_j = \lim_{n \to \infty} \sum_{j=0}^{N} c_j \cdot \omega_j^n \cdot V_j = c_0 V_0 = \Pi$

 2) Use the recursive equation $P(n) = P(n-1) \cdot A$

 AT STEADY STATE: $P(n) = P(n-1) = \Pi$

 SOLVE $\Pi = \Pi \cdot A$ subject to $\sum_{j=0}^{N} \Pi_j = 1$
Example 2: wet and dry days in a town

\[
\begin{pmatrix}
A & C \\
\begin{pmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{pmatrix} & [1 \\ 0]
\end{pmatrix}
\]

- **Question:** what is the probability that one year from now the day will be **dry**?

- By definition: \(P(365 \text{ days} = 1 \text{ year}) = CP^{365} \Rightarrow P^{365} \) ???

ASSUMPTION:

at \(n = 365 \) the steady state condition is established

\[
\begin{align*}
\Pi & = \Pi \cdot A \\
\sum_{j=0}^{N} \Pi_j & = 1
\end{align*}
\]

\[
\begin{align*}
\Pi_1 & = 0.8 \cdot \Pi_1 + 0.5 \cdot \Pi_2 \\
\Pi_1 + \Pi_2 & = 1
\end{align*}
\]

\[
\Rightarrow \Pi = \begin{pmatrix} 0.714 & 0.286 \end{pmatrix}
\]
First Passage Probabilities (1)

FIRST PASSAGE RANDOM TIME:

Random time that the system arrives *for the first time* in state j given that it was in state i at the initial time 0

$$T_{ij} = \begin{cases}
\min\{n \geq 1 \mid X(n) = j \text{ provided that } X(0) = i\} & \text{if } \exists n \geq 1 : X(n) = 1 \\
+\infty & \text{otherwise}
\end{cases}$$

NOTICE:

\[\{T_{ij} = n\} = \{X(n) = j, X(m) \neq j, 0 < m < n \mid X(0) = i\} \]

\[\{T_{ij} < \infty\} = \{X(n) = j, n \geq 1 \mid X(0) = i\} \]
FIRST PASSAGE PROBABILITY AFTER \(n \) TIME STEPS:

Probability that the system arrives \textbf{for the first time} in state \(j \) \textbf{after} \(n \) \textbf{steps}, given that it was in state \(i \) at the initial time 0

\[
\begin{align*}
 f_{ij}(n) &= P[T_{ij} = n] \\
 f_{ij}(n) &= P[X(n) = j, X(m) \neq j, 0 < m < n | X(0) = i] \\
\end{align*}
\]

\textbf{NOTICE:}

\(f_{ij}(n) \neq p_{ij}(n) \)

\(p_{ij}(n) = \text{probability that the system reaches state } j \) \textbf{after} \(n \) \textbf{steps} starting from state \(i \), but \textbf{not necessarily for the first time}
First Passage Probabilities (3)

- Probability of going from state 1 to state 1 in 1 step for the first time
 \[f_{11}(1) = p_{11} \]

- Probability that the system, starting from state 1, will return to the same state 1 for the first time after \(n \) steps: this is achieved by jumping in state 2 at the first step (\(p_{12} \)), remaining in state 2 during the successive \(n-2 \) steps (\(p_{22}^{n-2} \)) and moving back in the initial state 1 at the \(n \)-th step (\(p_{21} \)).
 \[f_{11}(n) = p_{12} \cdot p_{22}^{n-2} \cdot p_{21} \]

- Probability that the system will arrive for the first time in state 2 after \(n \) steps; this is equal to the probability of remaining in state 1 for \(n-1 \) steps (\(p_{11}^{n-1} \)) and then jumping in state 2, at the final step (\(p_{12} \))
 \[f_{12}(n) = p_{11}^{n-1} \cdot p_{12} \]
First Passage Probabilities (4)

- RELATIONSHIP WITH TRANSITION PROBABILITIES

\[f_{ij}(1) = p_{ij}(1) = p_{ij} \]

\[f_{ij}(2) = p_{ij}(2) - f_{ij}(1) \cdot p_{jj} \]

Probability that the system reaches state \(j \)
at step 2, given that it was in \(i \) at 0

\[f_{ij}(3) = p_{ij}(3) - f_{ij}(1) \cdot p_{jj}(2) - f_{ij}(2) \cdot p_{jj} \]

\[\cdots \]

\[f_{ij}(k) = p_{ij}(k) - \sum_{l=1}^{k-1} f_{ij}(k-l)p_{jj}(l) \]

(Renewal Equation)

Probability that the system reaches state \(j \) for the first time at step 1 (starting from \(i \) at 0) and that it remains in \(j \) at the successive step
Recurrent, transient and absorbing states (1)

- **DEFINITIONS:**

 - First passage probability that the system goes to state j **within m steps** given that it was in i at time 0:
 \[
 q_{ij}(m) = \sum_{n=1}^{m} f_{ij}(n) = \text{sum of the probabilities of the mutually exclusive events of reaching } j \text{ for the first time after } n = 1, 2, 3, \ldots, m \text{ steps}
 \]

 - Probability that the system **eventually** reaches state j from state i:
 \[
 q_{ij}(\infty) = \lim_{m \to \infty} q_{ij}(m)
 \]

 - Probability that the system **eventually** returns to the initial state:
 \[
 f_{ii} = q_{ii}(\infty)
 \]
Recurrent, transient and absorbing states (2)

- State \(i \) is **recurrent** if the system starting at such state will **surely** return to it **sooner or later** (i.e., in finite time):
 \[
 f_{ii} = q_{ii} (\infty) = 1
 \]
 - For recurrent states \(\Pi_i \neq 0 \)

- State \(i \) is **transient** if the system starting at such state has a **finite probability** of **never** returning to it:
 \[
 f_{ii} = q_{ii} (\infty) < 1
 \]
 - For these states, at steady state \(\Pi_i = 0 \)

we cannot have a **finite Markov process** in which all states are **transients** because eventually it will leave them and **somewhere** it must go at steady state

- State \(i \) is **absorbing** if the system cannot leave it once it enters: \(p_{ii} = 1 \)
Sojourn Time in a state

- **Sojourn time** S_i: time spent in a state i

- Recalling that:

 $p_{ii} = \text{probability that the system \text{“}moves to\text{”} i \text{ in one step, given that it was in } i$

 $1 - p_{ii} = \text{probability that the system exits i \text{ in one step, given that it was in } i$

 $\mathbb{P}(S_i = n) = p_{ii}^n (1 - p_{ii})$

 $S_i \sim \text{Geom}(1 - p_{ii})$

 $\mathbb{E}\{S_i\} = \text{average number of steps before the system exits state} = \frac{1}{1 - p_{ii}}$
• The **random** process of system transition in **time** can be described by an **integer random variable** $X(t)$

$$X(t) = 5 \rightarrow \text{the system occupies state number 5 at time } t$$

• The **stochastic process** may be **observed** at:

 - Discrete times \rightarrow **DISCRETE-TIME FINITE-STATE MARKOV CHAIN**

 \[
 0 \quad t_1 \quad t_2 \quad t_3 \quad t_4 \quad \cdots \quad t_n \quad T_m \quad t
 \]

 - Continuously \rightarrow **CONTINUOUS-TIME FINITE-STATE MARKOV PROCESS**

 \[
 0 \quad T_m \quad t
 \]
Continuous-Time Finite-State Markov Processes (CTFSMP)
• The stochastic process is **observed continuously** and **transitions** are assumed to **occur continuously** in time
The random process of system transition between states in time is described by a stochastic process \(\{X(t); t \geq 0\} \)

- \(X(t) \) := system state at time \(t \)
 - \(X(3.6) = 5 \): the system is in state number 5 at time \(t = 3.6 \)

OBJECTIVE:
Computing the probability that the system is in a given state as a function of time, for all possible states

\[
P[X(t) = j], t \in [0, T_m], j = 0, 1, \ldots, N
\]
The conceptual model: Markov Assumption

• **IN GENERAL STOCHASTIC PROCESSES:**
 the probability of a future state of the system usually depends on its entire life history

\[
P[X(t + \nu) = j \mid X(t) = i, X(u) = x(u), 0 \leq u < t] \\
(i = 0, 1, \ldots, N, j = 0, 1, \ldots, N)
\]

• **IN MARKOV PROCESSES:**
 the probability of a future state of the system only depends on its present state

\[
P[X(t + \nu) = j \mid X(t) = i, X(u) = x(u), 0 \leq u < t] = P[X(t + \nu) = j \mid X(t) = i] \\
(i = 0, 1, \ldots, N, j = 0, 1, \ldots, N)
\]

THE PROCESS HAS “NO MEMORY”
The conceptual model: Transition Probabilities

- **Transition probability** that the system in state i at time t moves to state j at time $t + \nu$

 $$p_{ij}(t, t + \nu) = P[X(t + \nu) = j \mid X(t) = i], t, \nu > 0$$

 \[i = 0, 1, \ldots, N, j = 0, 1, \ldots, N\]

- If the **transition probability** depends on the **interval ν** and **not** on the **individual times** t and $t + \nu$
 - the probabilities are **stationary**
 - the Markov process is **homogeneous** in time

 $$p_{ij}(t, t + \nu) = P[X(t + \nu) = j \mid X(t) = i] = p_{ij}(\nu)$$
HYPOTHESIS:

- The time interval $\nu = dt$ is small such that only one event (i.e., one stochastic transition) can occur within it

\[p_{ij}(\nu) = p_{ij}(dt) = P[X(t + dt) = j | X(t) = i] \]

= (Taylor 1^{st} order expansion)

\[\alpha_{ij} \cdot dt + \theta(dt), \lim_{dt \to 0} \frac{\theta(dt)}{dt} = 0 \]

α_{ij} = transition rate from state i to state j
The conceptual model: The Transition Probability Matrix (1)

\[p_{ij}(dt) = \alpha_{ij} \cdot dt + \theta(dt), \lim_{dt \to 0} \frac{\theta(dt)}{dt} = 0 \]

\[p_{ii}(dt) = 1 - \sum_{j \neq i} p_{ij}(dt) = 1 - dt \cdot \sum_{j \neq i} \alpha_{ij} + \theta(dt) \]

- In analogy with the discrete-time formulation:

Discrete-time transition probability matrix

\[
\begin{pmatrix}
 p_{00} & p_{01} & \cdots & p_{0N} \\
 p_{10} & p_{11} & \cdots & p_{1N} \\
 \vdots & \vdots & \ddots & \vdots \\
 p_{N0} & p_{N1} & \cdots & p_{NN}
\end{pmatrix}
\]

Continuous-time transition probability matrix

\[
\begin{pmatrix}
 1 - dt \cdot \sum_{j=1}^{N} \alpha_{0j} & \alpha_{01} \cdot dt & \cdots & \alpha_{0N} \cdot dt \\
 \alpha_{10} \cdot dt & 1 - dt \cdot \sum_{j=0}^{N} \alpha_{1j} & \cdots & \alpha_{1N} \cdot dt \\
 \vdots & \vdots & \ddots & \vdots \\
 \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]
In analogy with the discrete-time formulation:

\[P(t + dt) = P(t) \cdot A^* \]

\[
\begin{bmatrix}
P_0(t + dt)P_1(t + dt)\ldots P_N(t + dt)
\end{bmatrix} = \\
\begin{bmatrix}
1 - dt \cdot \sum_{j=1}^{N} \alpha_{0,j} & \alpha_{01} \cdot dt & \ldots & \alpha_{0N} \cdot dt \\
\alpha_{10} \cdot dt & 1 - dt \cdot \sum_{j=0 \atop j \neq 1}^{N} \alpha_{1,j} & \ldots & \alpha_{1N} \cdot dt \\
\vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}
\]

First-equation:

\[
P_0(t + dt) = \left[1 - dt \sum_{j=1}^{N} \alpha_{0,j} \right] P_0(t) + \alpha_{10}P_1(t) \cdot dt + \ldots + \alpha_{N0}P_N(t) \cdot dt
\]
The conceptual model: The Transition Probability Matrix (3)

\[
P_0(t + dt) = \left[1 - dt \sum_{j=1}^{N} \alpha_{0j}\right] P_0(t) + \alpha_{10} P_1(t) \cdot dt + \ldots + \alpha_{N0} P_N(t) \cdot dt
\]

- Subtract \(P_0(t) \) on both sides

\[
P_0(t + dt) - P_0(t) = P_0(t) - P_0(t) - \sum_{j=1}^{N} \alpha_{0j} P_0(t) \cdot dt + \alpha_{10} P_1(t) \cdot dt + \ldots + \alpha_{N0} P_N(t) \cdot dt
\]

- Divide by \(dt \)

\[
\frac{P_0(t + dt) - P_0(t)}{dt} = -\sum_{j=1}^{N} \alpha_{0j} P_0(t) + \alpha_{10} P_1(t) + \ldots + \alpha_{N0} P_N(t)
\]

- Let \(dt \to 0 \)

\[
\lim_{dt \to 0} \frac{P_0(t + dt) - P_0(t)}{dt} = \frac{dP_0}{dt} = -\sum_{j=1}^{N} \alpha_{0j} \cdot P_0(t) + \alpha_{10} \cdot P_1(t) + \ldots + \alpha_{N0} \cdot P_N(t)
\]
The conceptual model: The Transition Probability Matrix (4)

- Extending to the other equations:

\[
\frac{dP}{dt} = P(t) \cdot A, \quad A = \begin{pmatrix}
-\sum_{j=1}^{N} \alpha_{0j} & \alpha_{01} & \cdots & \alpha_{0N} \\
\alpha_{00} & -\sum_{j=0, j \neq 1}^{N} \alpha_{1j} & \cdots & \alpha_{1N} \\
\alpha_{10} & \alpha_{11} & \cdots & \cdots \\
\vdots & \vdots & \ddots & \ddots \\
\alpha_{N0} & \alpha_{N1} & \cdots & \cdots \\
\end{pmatrix}
\]

TRANSITION RATE MATRIX

System of linear, first-order differential equations in the unknown state probabilities

\[P_j(t), \quad j = 0, 1, 2, \ldots, N, \quad t \geq 0\]
Example 3: one component/one repairman—Markov Diagram and transition rate matrix

ASSUMPTION: exponential failure/repair times distributions

Discrete states = 0 \rightarrow component working
 1 \rightarrow component failed

Transition rates = λ \rightarrow rate of failure (i.e., from 0 to 1)
 = μ \rightarrow rate of repair (i.e., from 1 to 0)

\[
\begin{bmatrix}
-\lambda & \lambda \\
\mu & -\mu
\end{bmatrix}
\]

MARKOV DIAGRAM

TRANSITION RATE MATRIX
Example 4: system with N identical components and N repairmen available

SYSTEM CHARACTERISTICS:

- The system is made of N identical components
- Each component can be in two states: **working** or **failed**
- The transition rates are constant $= \lambda \rightarrow$ rate of failure $= \mu \rightarrow$ rate of repair
- N repairmen are available

- **System discrete states:**
 - State 0: none failed, all components function
 - State 1: one component failed, $N-1$ function
 - State 2: two components failed, $N-2$ function
 - …
 - State N: all components failed, none function
Example 4: system with \(N \) identical components and \(N \) repairman available

HYPOTHESES:
- one event (failure or repair of one component) can occur in the small \(\Delta t \)
- the events are mutually exclusive

Explanation:
Probability of transition \(0 \rightarrow 1 \) =
= probability \{ anyone of the \(N \) components fails in \(\Delta t \) \} =
= probability \{ component 1 fails or component 2 fails or component 3 fails … \} =
= probability \{ component 1 fails \} + probability \{ component 2 fails \} + … =
= \(\lambda \Delta t + \lambda \Delta t + \ldots = N\lambda \Delta t \)
Example 5: system with N identical components and 1 repairman available

SYSTEM CHARACTERISTICS:

- The system is made of N **identical** components.
- Each component can be in **two** states: working or failed.
- The **transition rates** are **constant**: $\lambda \rightarrow$ rate of failure, $\mu \rightarrow$ rate of repair.
- One repairman is available.

Diagram:

- **State 0:** all functioning, with transitions $1-N\lambda \Delta t$ and $N\lambda \Delta t$.
- **State 1:** $N\lambda \Delta t$ transitions to state 0 and $(N-1)\lambda \Delta t$ to state 2.
- **State 2:** $\mu\Delta t$ transitions to state 1 and $1-\mu\Delta t-(N-1)\lambda\Delta t$ to state 3.
- **State $N-1$:** $\lambda\Delta t$ transitions to state N.
- **State N:** all failed, with $\mu\Delta t$ transitions to state $N-1$.

Francesco Cannarile & Enrico Zio
Solution to the Fundamental Equation
Solution to the fundamental equation of CTFSMP

\[
\left\{ \begin{align*}
\frac{dP}{dt} &= P(t) \cdot A \\
P(0) &= C
\end{align*} \right.
\]

where

\[
A = \begin{pmatrix}
-\sum_{j=1}^{N} \alpha_{0j} & \alpha_{01} & \cdots & \alpha_{0N} \\
\alpha_{10} & -\sum_{j=0}^{N} \alpha_{1j} & \cdots & \alpha_{1N} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{N0} & \alpha_{N1} & \cdots & -\sum_{j=N}^{N} \alpha_{NN}
\end{pmatrix}
\]

System of linear, first-order differential equations in the unknown state probabilities

\[P_j(t), j = 0, 1, 2, \ldots, N, \ t \geq 0\]

USE LAPLACE TRANSFORM
Solution to the fundamental equation of CTFSMP: the Laplace Transform Method

- Laplace Transform: $\mathcal{L}\{P_j(t)\} = \mathcal{L}\left[\int_0^\infty e^{-st} P_j(t)\,dt\right] = \frac{P_j(s)}{s}$, $j = 0,1,...,N$

- First derivative: $L\left(\frac{dP_j(t)}{dt}\right) = s \cdot \mathcal{L}\{P_j(t)\} - P_j(0)$, $j = 0,1,...,N$

- Apply the Laplace operator to

$$
\frac{dP}{dt} = P(t) \cdot A
$$

$$
L\left[\frac{dP(t)}{dt}\right] = L[P(t) \cdot A]
$$

First derivative

$$
\mathcal{L}\{\frac{dP(t)}{dt}\} = \mathcal{L}\{P(t) \cdot A\}
$$

Linearity

$$
\mathcal{L}\{P(t)\} = C \cdot \left[\frac{s \cdot I - A}{A}\right]^{-1}
$$

$P(t)$ = inverse transform of $\tilde{P}(s)$
CTFSMP: steady state probabilities

- At steady state \(\frac{d P(t)}{dt} = 0 \) \(\Rightarrow \) \(\frac{d P(t)}{dt} = P(t) \cdot A = \Pi \cdot A = 0 \)

- Solve the (linear) system:

\[
\begin{align*}
\Pi \cdot A &= 0 \\
\sum_{j=0}^{N} \Pi_j &= 1
\end{align*}
\]

- It can be shown that \(\Pi_j = \frac{D_j}{\sum_{i=0}^{N} D_i} \quad j = 0, 1, 2, \ldots, N \)

\(D_j \) = determinant of the square matrix obtained from \(A \) by deleting the \(j \)-th row and column
Example 6: one component/one repairman – Solution to the fundamental equation (1)

- Component discrete states = 0 → component working
 = 1 → component failed

- **Constant** transition rates = λ → rate of failure (i.e., from 0 to 1)
 = μ → rate of repair (i.e., from 1 to 0)

- Component is working at \(t = 0 \): \(C = [1 \; 0] \)

\[
A = \begin{pmatrix}
-\lambda & \lambda \\
\mu & -\mu
\end{pmatrix}
\]
Example 6: one component/one repairman – Solution to the fundamental equation (2)

• Solve \(\bar{P}(s) = C \cdot (sI - A)^{-1} \)

• Compute \((sI - A)^{-1} \)

\[
(sI - A)^{-1} = \begin{pmatrix} s + \lambda & -\lambda \\ -\mu & s + \mu \end{pmatrix}^{-1} = \frac{1}{\text{det}[(sI - A)]} \begin{pmatrix} s + \mu & \lambda \\ \mu & s + \lambda \end{pmatrix}
\]

\[
= \frac{1}{s^2 + s\lambda + s\mu} \begin{pmatrix} s + \mu & \lambda \\ \mu & s + \lambda \end{pmatrix}
\]

\[
\bar{P}(s) = C \cdot (sI - A)^{-1} = \frac{1}{s^2 + s\lambda + s\mu} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} s + \mu & \lambda \\ \mu & s + \lambda \end{pmatrix} = \begin{bmatrix} \frac{s + \mu}{s(s + \lambda + \mu)} & \frac{\lambda}{s(s + \lambda + \mu)} \end{bmatrix}
\]
Example 6: one component/one repairman – Solution to the fundamental equation (3)

- **Anti-Transform**
 \[\tilde{P}(s) = \begin{bmatrix} \frac{s + \mu}{s(s + \lambda + \mu)} & \frac{\lambda}{s(s + \lambda + \mu)} \end{bmatrix} \]

- It is known that
 \[L^{-1}\left[\frac{1}{s + a} \right] = e^{-ax} \quad \text{and} \quad L^{-1}\left[\frac{1}{s(s + a)} \right] = \frac{1}{a} (1 - e^{-ax}) \]

STATE PROBABILITY VECTOR

\[
P(t) = \begin{bmatrix} \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} \cdot e^{-(\lambda + \mu)t} \\ \frac{\lambda}{\lambda + \mu} - \frac{\lambda}{\lambda + \mu} \cdot e^{-(\lambda + \mu)t} \end{bmatrix}
\]

- **System instantaneous availability** (probability of being in operational state 0 at time \(t \))
- **System instantaneous unavailability** (probability of being in failed state 1 at time \(t \))
Example 6: one component/one repairman – Solution to the fundamental equation (4)

- **TIME-DEPENDENT STATE PROBABILITIES**

\[P_0(t) = \frac{\mu}{\mu + \lambda} + \frac{\lambda}{\mu + \lambda} e^{-(\lambda + \mu)t} \]

(system instantaneous availability)

\[P_1(t) = \frac{\lambda}{\mu + \lambda} + \frac{\lambda}{\mu + \lambda} e^{-(\lambda + \mu)t} \]

(system instantaneous unavailability)

- **STEADY STATE PROBABILITIES**

\[\Pi_0 = \lim_{t \to \infty} P_0(t) = \frac{\mu}{\mu + \lambda} = \frac{1/\lambda}{1/\mu + 1/\lambda} = \frac{MTBF}{MTTR + MTBF} \]

= average fraction of time the system is functioning

\[\Pi_1 = \lim_{t \to \infty} P_1(t) = \frac{\lambda}{\mu + \lambda} = \frac{1/\mu}{1/\mu + 1/\lambda} = \frac{MTTR}{MTTR + MTBF} \]

= average fraction of time the system is down (i.e., under repair)
Quantity of Interest
Frequency of departure from a state

- **Unconditional** probability of arriving in state j in the next dt departing from state i at time t:

$$P[X(t + dt) = j, X(t) = i]$$

$$P[X(t + dt) = j|X(t) = i]P[X(t) = i] = p_{ij}(dt)P_i(t)$$

- **Frequency of departure** from state i to state j:

$$v_{ij}^{dep}(t) = \lim_{dt \to 0} \frac{p_{ij}(dt)P_i(t)}{dt} = \alpha_{ij}P_i(t) = v_{ij}^{dep} = \alpha_{ij} \cdot \Pi_i$$

 (at steady state)

- **Total frequency of departure** from state i to any other state j:

$$v_i(t) = \sum_{j=0}^{N} \alpha_{ij} \cdot P_i(t) = -\alpha_{ii} \cdot P_i(t) = v_i = -\alpha_{ii} \cdot \Pi_i$$

 (at steady state)
Frequency of arrival to a state

- **In analogy**, considering the arrivals to state i from any state k:

 \[v_{i \text{arr}}^i(t) = \sum_{k=0}^{N} \alpha_{ki} \cdot P_k(t) \]

 \[v_{i \text{arr}}^i = \sum_{k=0}^{N} \alpha_{ki} \cdot \Pi_k \] (at steady state)

- Since \(\Pi \cdot A = 0 = \sum_{k=0}^{N} \alpha_{ki} \cdot \Pi_k \) \(\Rightarrow -\alpha_{ii} \cdot \Pi_i = \sum_{k=0}^{N} \alpha_{ki} \cdot \Pi_k \)

AT STEADY STATE:
frequency of departures from state i = frequency of arrivals to state i
• **SYSTEM FAILURE INTENSITY** \(W_f \):

 - **Rate** at which system failures occur
 - **Expected number** of system failures per unit of time
 - **Rate of exiting a success state** to go into one of fault

\[
W_f (t) = \sum_{i \in S} P_i(t) \cdot \lambda_{i \rightarrow F}
\]

\(S \) = set of success states of the system

\(F \) = set of failure states of the system

\(P_i(t) \) = probability of the system being in the functioning state \(i \) at time \(t \)

\(\lambda_{i \rightarrow F} \) = conditional (transition) probability of leaving success state \(i \) towards a failure state
• **SYSTEM REPAIR INTENSITY** \(W_r \):

 • **Rate** at which system repairs occur
 • **Expected number** of system repairs per unit of time
 • **Rate of exiting a failed state** to go into one of success

\[
W_r (t) = \sum_{j \in F} P_j (t) \cdot \mu_{j \rightarrow S}
\]

\(S = \) set of success states of the system

\(F = \) set of failure states of the system

\(P_j (t) = \) probability of the system being in the failure state \(j \) at time \(t \)

\(\mu_{j \rightarrow S} = \) conditional (transition) probability of leaving failure state \(j \) towards a success state
Example 7: one component/one repairman – Failure and repair intensities

- $S = \text{set of success states of the system} = \{0\}$
- $F = \text{set of failure states of the system} = \{1\}$
- $\lambda_{i \rightarrow F} = \lambda$
- $\mu_{j \rightarrow S} = \mu$

The failure intensity rate is given by:

$$W_f(t) = \sum_{i \in S} P_i(t) \cdot \lambda_{i \rightarrow F}$$

The repair intensity rate is given by:

$$W_r(t) = \sum_{j \in F} P_j(t) \cdot \mu_{j \rightarrow S}$$

Where:

- $P_i(t)$ is the probability of being in state i at time t.
- $\lambda_{i \rightarrow F}$ is the failure intensity rate from state i to state F.
- $\mu_{j \rightarrow S}$ is the repair intensity rate from state j to state S.

The functions $W_f(t)$ and $W_r(t)$ represent the rate at which failures and repairs occur, respectively, over time.
Sojourn Time in a state (1)

- **Sojourn time** T_i: time spent in a state i

- Markov property and time homogeneity imply that if at time t the process is in state i, the time remaining in state i is independent of time already spent in state i

\[
P(T_i > t + s | T_i > t) = P(X(t + u) = i, 0 \leq u \leq s | X(u) = i, 0 \leq u \leq t) =
\]

\[
= P(X(t + u) = i, 0 \leq u \leq s | X(t) = i) \text{ (by Markov property)}
\]

\[
= P(X(u) = i, 0 \leq u \leq s | X(0) = i) \text{ (by homogeneity)}
\]

\[
= P(T_i > s) \text{ Memoryless Property}
\]

- The only distribution satisfying the memoryless property is the **Exponential distribution** $T_i \sim \text{Exp}$
Sojourn Time in a state (2)

- **Sojourn time** T_i: time spent in a state i

- The system **remain** in state i before leaving it with **constant** rate $-\alpha_{ii}$

\[T_i \sim \text{Exp}(-\alpha_{ii}) \]

- **Expected sojourn time** l_i: average time of occupancy of state i

\[l_i = \mathbb{E}\{T_i\} = \frac{1}{-\alpha_{ii}} \]
Sojourn Time in a state (3)

- Total frequency of departure at steady state: \(\nu_i = -\alpha_{ii} \cdot \Pi_i \)
- Average time of occupancy of state: \(l_i = \frac{1}{-\alpha_{ii}} \)

\[\nu_i = -\alpha_{ii} \cdot \Pi_i = \frac{\Pi_i}{l_i} \]

\[\Pi_i = \nu_i \cdot l_i \]

The **mean** proportion of time \(\Pi_i \) that the system spends in state \(i \) is equal to the visit frequency to state \(i \) multiplied by the mean duration of one visit in state \(i \).
• **System instantaneous availability** at time t

 sum of the **probabilities** of being in a **success** state at time t

 $$p(t) = \sum_{i \in S} P_i(t) = 1 - q(t) = 1 - \sum_{j \in F} P_j(t)$$

 $S = \text{set of success states of the system}$

 $F = \text{set of failure states of the system}$

 In the Laplace domain

 $$\Phi(s) = \sum_{i \in S} \Phi_i(s) = \frac{1}{s} - \sum_{j \in F} \Phi_j(s)$$
• TWO CASES:

1) Non-Reparaible Systems ➡ No repairs allowed

2) Reparaible Systems ➡ Repairs allowed
System Reliability: Non-Reparaible Systems

- No repairs allowed ⇒ Reliability = Availability \(R(t) \equiv p(t) = 1 - q(t) \)

- In the Laplace Domain: \(\hat{R}(s) = \sum_{i \in S} \hat{P}_i(s) = \frac{1}{s} - \sum_{j \in F} \hat{P}_j(s) \)

- Mean Time to Failure (MTTF):

\[
\text{MTTF} = \int_0^\infty R(t) dt = \left[\int_0^\infty R(t) e^{-st} dt \right]_{s=0} = \tilde{R}(0) = \sum_{i \in S} \tilde{P}_i(0) = \left[\frac{1}{s} - \sum_{j \in F} \tilde{P}_j(s) \right]_{s=0}
\]
• TWO CASES:

1) Non-reparaible systems
 → No repairs allowed

2) Reparaible systems
 → Repairs allowed
System Reliability: Reparable Systems (1)

1. Exclude all the failed states \(j \in F \) from the transition rate matrix \(A \)

\[
A = \begin{pmatrix}
-2\lambda & 2\lambda & 0 \\
\mu & \mu + \lambda & \lambda \\
0 & 2\mu & -2\mu
\end{pmatrix}
\]

The new matrix \(A' \) contains the transition rates for transitions only among the success states \(i \in S \)

\[
A' = \begin{pmatrix}
-2\lambda & 2\lambda & 0 \\
\mu & -(\mu + \lambda) & \lambda \\
0 & 2\mu & -2\mu
\end{pmatrix}
\]
2. Solve the **reduced problem** of A' for the probabilities $P_i^*(t), \ i \in S$ of being in these (transient) **safe states**

\[
\frac{d}{dt} P_i^*(t) = P_i^*(t) \cdot A'
\]

Reliability

\[
R(t) = \sum_{i \in S} P_i^*(t)
\]

Mean Time To Failure (MTTF)

\[
MTTF = \int_0^\infty R(t) \, dt = \sum_{i \in S} \Phi_i(0) = \Phi(0)
\]

NOTICE: in the reduced problem we have only transient states $\Rightarrow \Pi_i^* = P_i^*(\infty) = 0$
Example 8: system with two identical components and two repairmen available (1)

- **TWO CASES:**

 a) Parallel logic (1 out of 2)

b) Series logic (2 out of 2)

\[A = \begin{pmatrix} -2\lambda & 2\lambda & 0 \\ \mu & - (\mu + \lambda) & \lambda \\ 0 & 2\mu & -2\mu \end{pmatrix} \]
Example 8: system with two identical components and two repairmen available (2)

PARALLEL LOGIC

System discrete states:
- State 0: system is operating (both components functioning)
- State 1: system is operating (only one of the two components functioning)
- State 2: system is failed (both components failed)
Example 8: system with two identical components and two repairmen available (3)

1. Exclude all the failed states $j \in F$ from the transition rate matrix

- **System reliability** $R(t) :=$ probability of the system being in **safe states 0 or 1 continuously** from $t = 0$

\[
\begin{align*}
A &= \begin{pmatrix}
-2\lambda & 2\lambda & 0 \\
\mu & -(\mu + \lambda) & \lambda \\
0 & 2\mu & -2\mu
\end{pmatrix} \\
\Rightarrow \quad A' &= \begin{pmatrix}
-2\lambda & 2\lambda \\
\mu & -(\mu + \lambda)
\end{pmatrix}
\end{align*}
\]
Example 8: System with two identical components and two repairmen available (4)

2. Solve the **reduced problem** of \(\overline{A'} \) for the probabilities \(P_i^*(t), i \in S \) of being in these (transient) **safe states**

In the time domain:

\[
\begin{align*}
\frac{d P^*}{dt} &= P^*(t) \cdot A' \\
\implies \frac{d P^*}{dt} &= P^*(t) \begin{pmatrix} -2\lambda & 2\lambda \\
\mu & -(\lambda + \mu) \end{pmatrix} \\
P^*(0) &= (1 \ 0)
\end{align*}
\]

In the Laplace domain:

\[
\tilde{P}^*(s) = \tilde{P}^*(0) \cdot (sI - A')^{-1} \implies \tilde{P}^0(s) = (1 \ 0) \cdot (sI - A')^{-1}
\]
Example 8: system with two identical components and two repairmen available (5)

\[f(s) = (1, 0) \cdot (sI - A')^{-1} \]

with \(A' = \begin{pmatrix} -2\lambda & 2\lambda \\ \mu & -(\lambda + \mu) \end{pmatrix} \)

\[sI - A' = \begin{pmatrix} s + 2\lambda & -2\lambda \\ -\mu & s + \mu + \lambda \end{pmatrix} \]

\[
(sI - A')^{-1} = \frac{1}{(s + 2\lambda)(s + \mu + \lambda) - 2\lambda\mu} \begin{pmatrix} s + \mu + \lambda & 2\lambda \\ \mu & s + 2\lambda \end{pmatrix}
\cdot \frac{1}{(s - \omega_0)(s - \omega_1)} \begin{pmatrix} s + \lambda + \mu & 2\lambda \\ \mu & s + 2\lambda \end{pmatrix}
\]

where \(\omega_{0,1} = \frac{-3\lambda - \mu \pm \sqrt{\lambda^2 + 6\lambda\mu + \mu^2}}{2} \)
Example 8: system with two identical components and two repairmen available (6)

\[\tilde{P}^*(s) = C^* \cdot (sI - A')^{-1} = \frac{1}{(s - \omega_0)(s - \omega_1)} \begin{pmatrix} 1 & 0 \\ s + \mu + \lambda & 2\lambda \\ \mu & s + 2\lambda \end{pmatrix} = \frac{1}{(s - \omega_0)(s - \omega_1)} \begin{pmatrix} s + \mu + \lambda & 2\lambda \end{pmatrix} \]

SYSTEM RELIABILITY

\[\tilde{R}(s) = \tilde{P}_0(s) + \tilde{P}_1(s) \quad \text{In the Laplace domain} \]

- It is known that \(L^{-1} \left[\frac{1}{s + a} \right] = e^{-ax} \) and \(L^{-1} \left[\frac{1}{s(s + a)} \right] = \frac{1}{a} (1 - e^{-ax}) \)

SYSTEM RELIABILITY

\[R(t) = \frac{\omega_0 \cdot e^{\omega_1 \cdot t} - \omega_1 \cdot e^{\omega_0 \cdot t}}{\omega_0 - \omega_1} \quad \text{In the time domain} \]
Example 8: system with two identical components and two repairmen available (7)

- **MEAN TIME TO FAILURE**

 \[MTTF = \mathbb{E}(0) = \sum_{i} P_r^C(0) = \sum_{i=0}^{1} \tilde{P}_i^*(0) \]

- Starting from \(\mathcal{P}_i^C(s) = C^* \cdot \left(s \cdot I \div A' \right)^{-1} \)

\[
MTTF = C^* \cdot \left(-A' \right)^{-1} \cdot w^T \quad \text{with} \quad w = [1 \ 1 \ 1 \ \ldots \ \ 1]^T
\]

\[
MTTF = (1 \ 0) \cdot \left(\begin{array}{cc}
2\lambda & -2\lambda \\
-\mu & \mu + \lambda
\end{array} \right)^{-1} \cdot \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \\
= (1 \ 0) \cdot \frac{1}{2\lambda(\lambda + \mu) - 2\lambda \mu} \cdot \left(\begin{array}{cc} \mu + \lambda & 2\lambda \\ \mu & 2\lambda \end{array} \right) \cdot \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \\
= \frac{1}{2\lambda^2}(\mu + \lambda \ 2\lambda) \cdot \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \frac{3\lambda^2 + \mu}{2\lambda^2} = \\
= \frac{3}{2\lambda} + \frac{\mu}{2\lambda^2}
\]
Example 8: system with two identical components and two repairmen available (8)

\[A \equiv \begin{pmatrix} -2\lambda & 2\lambda & 0 \\ \mu & -(\mu + \lambda) & \lambda \\ 0 & 2\mu & -2\mu \end{pmatrix} \]

- **TWO CASES:**

 a) Parallel logic (1 out of 2)

 b) Series logic (2 out of 2)
Example 8: system with two identical components and two repairmen available (9)

System discrete states:
State 0: system is operating (both components functioning)
State 1: system is failed (only one of the two components functioning)
State 2: system is failed (both components failed)

SERIES LOGIC

\[
A = \begin{pmatrix}
-2\lambda & 2\lambda & 0 \\
\mu & - (\mu + \lambda) & \lambda \\
0 & 2\mu & -2\mu
\end{pmatrix}
\]
Example 8: system with two identical components and two repairmen available (9)

1. Exclude all the failed states $j \in F$ from the transition rate matrix

- **System reliability** $R(t) :=$ probability of the system being in **safe states 0 or 1 continuously** from $t = 0$

\[
A = \begin{pmatrix}
-2\lambda & 2\lambda & 0 \\
\mu & -(\lambda + \mu) & \lambda \\
0 & 2\mu & -2\mu
\end{pmatrix} \Rightarrow A' = -2\lambda
\]
Example 8: system with two identical components and two repairmen available (10)

2. Solve the reduced problem of A' for the probabilities $P_i^*(t), \ i \in S$ of being in these (transient) safe states

- Easy to solve in the time domain:

$$\begin{align*}
\frac{dP^*}{dt} &= P^* \cdot A' \\
\left[P^*(0) = C^*
ight]
\end{align*}$$

which simplifies to

$$\begin{align*}
\frac{dP_0^*}{dt} &= -2\lambda \cdot P_0^* \\
\left[P_0^*(0) = 1\right]
\end{align*}$$

$$R(t) = P_0^*(t) = e^{-2\lambda t}$$