Challenges and opportunities in reliability engineering: the big KID (Knowledge, Information and Data)

Enrico Zio

Chair on Systems Science and the Energy Challenge – CentraleSupelec, Fondation Electricité de France (EDF), France
Energy Department, Politecnico di Milano, Italy
Aramis Srl, Italy
Problem statement

Failures

Prevented by

Design for Reliability

Maintenance

Redundancy Training Safety Reviews

No Hazard

Hazard

Normal Degraded ... Failure

Time
INDUSTRY
The 4th Industrial Revolution - "Industry 4.0"

Drivers
- Quality of life
- Engineering Sciences

1st Industrial Revolution
- 1782: Steam engine
- 1813: Industrialization
- Power generation, Mechanical automation

2nd Industrial Revolution
- 1913: Conveyor belt

3rd Industrial Revolution
- 1954: Electronic Automation
- Computer, NC, PLC

4th Industrial Revolution
- 2015: Smart Automation
- Cyber Physical Systems
- ICT

From Industry 1.0 to Industry 4.0

- **First Industrial Revolution**
 - Based on the introduction of mechanical production equipment driven by water and steam power
 - First mechanical loom, 1784

- **Second Industrial Revolution**
 - Based on mass production achieved by division of labor concept and the use of electrical energy
 - First conveyor belt, Cincinnati slaughterhouse, 1870

- **Third Industrial Revolution**
 - Based on the use of electronics and IT to further automate production
 - First programmable logic controller (PLC) Modicon D64, 1969

- **Fourth Industrial Revolution**
 - Based on the use of cyber-physical systems

Degree of complexity

CentraleSupélec

Fondation EDF

Science - Enseignement en partenariat avec l’Institut de France
(SMART) Reliability Engineering
The Big KID
\begin{align*}
v_q &= -r_s i_q + \frac{\omega_c}{\omega_b} \Psi_d + \frac{p}{\omega_b} \Psi_q, \\
v_d &= -r_s i_d - \frac{\omega_c}{\omega_b} \Psi_q + \frac{p}{\omega_b} \Psi_d, \\
v_o &= -r_s i_o + \frac{p}{\omega_b} \Psi_o, \\
0 &= v_{aq} i_{aq} + \frac{p}{\omega_b} \Psi_{aq}, \\
v_f &= v_{lf} + \frac{p}{\omega_b} \Psi_f, \\
0 &= v_{ad} i_{ad} + \frac{p}{\omega_b} \Psi_{ad}, \\
T_e &= \frac{3}{2} \frac{P}{\omega_b} \left(\Psi_d i_q - \Psi_q i_d \right), \\
p \omega_r &= \frac{P}{2f} (T_a - T_e),
\end{align*}

\text{Real World Problem} \quad \text{Mathematical Problem} \quad \text{Real World Solution} \quad \text{Mathematical Solution} \quad \text{interpretation} \quad \text{formulation}
Big (K)Information(D)
Can the Big KID become SMART for Reliability Engineering?
Problem statement

Failures

Prevented by

Design for Reliability

Maintenance

Redundancy Training Safety Reviews

No Hazard

Hazard

Normal Degraded Failure

Time
Reliability analysis for Design for Reliability:

From failure modeling to degradation-to-failure modeling
Reliability analysis for Design for Reliability:

From failure modeling to degradation-to-failure modeling

Integrating physics-of-failure knowledge in reliability models

- Multi-State Physic-Based Models
Reliability?

KID
(Knowledge, Information, Data)

Model

Sufficient failure data

Statistical models of time to failure

Stochastic process models

Physics-based models

Multi-state models

Physics knowledge
Expert judgment

Field data

Highly reliable
Alloy 82/182 dissimilar metal weld of piping in a PWR primary coolant system

Physical laws

Multi-state physics model of crack development in Alloy 82/182 dissimilar metal weld

\[\varphi_1 = \int \left(\frac{b}{T} \right) \cdot \left(\frac{t}{T} \right)^{b-1} \cdot f_{PDF}(\tau, b) \, d\tau \, db \]

\[\varphi_2 = \begin{cases} \frac{adP_D}{a_Mu^2(1-P_D(1-a_D/(u\hat{a}_M)))}, & \text{if } u > a_D/\hat{a}_M \\ 0, & \text{else} \end{cases} \]

\[\varphi_3 = \begin{cases} \frac{acPC}{a_Mu^2(1-P_C(1-a_C/(u\hat{a}_M)))}, & \text{if } u > a_C/\hat{a}_M \\ 0, & \text{else} \end{cases} \]

\[\varphi_4 = \begin{cases} \frac{1}{w}, & \text{if } w > (a_L - a_D)/\hat{a}_M \\ 0, & \text{else} \end{cases} \]
Random shocks

Degradation process

Random shock process

Dependences in degradation processes

Internal leak

Initial state

Failure state

\[\dot{D}_b(t) = \omega_b (1 + \beta_{Y_p(t)}) \]

\[Z(t) = \left(\begin{array}{c} D_b(t) \\ Y_p(t) \end{array} \right) \]

\[\begin{align*}
Y_p(t) & \xrightarrow{\lambda_{32}} 2 \\
2 & \xrightarrow{\lambda_{21}} 1 \\
1 & \xrightarrow{\lambda_{10}} 0
\end{align*} \]
Maintenance

Degradation process

Preventive maintenance (a)
Corrective maintenance (b)
Uncertainty

Uncertain parameters in degradation models

Initial state

Failure state

Uncertainty

Internal leak

$D_b(t)$

$Y_p(t)$

$\dot{D}_b(t) = \omega_b (1 + \rho \dot{Y}_p(t))$
Degradation processes

Internal leak

$D_b(t)$

$\dot{D}_b(t) = \omega_b (1 + \beta Y_p(t))$

$Z(t) = \begin{pmatrix} D_b(t) \\ Y_p(t) \end{pmatrix}$

Initial state

Failure state

$Y_p(t)$

λ_{32}

λ_{21}

λ_{10}

$3 \rightarrow 2 \rightarrow 1 \rightarrow 0$

Piecewise-deterministic Markov process (PDMP)

$X(t)$

$\dot{X}(t) = \begin{pmatrix} X_{L_1}'(t) \\ \vdots \\ X_{L_M}'(t) \end{pmatrix}$

$= f_L^{Y(t)}(X(t), t | \theta_L)$

$Y(t)$

$\lim_{\Delta t \rightarrow 0} P(Y(t + \Delta t) = j | X(t), Y(t) = i, \theta_K) / \Delta t$

$= \lambda_i(j | X(t), \theta_K), \forall t \geq 0, i, j \in S, i \neq j$
MC Simulation

While \(k < N_{\text{max}} \)

1. Initialize the system by setting \(Z' = (X'(0), Y'(0)) \) (initial state), and the time \(T = 0 \) (initial system time).
2. Set \(t' = 0 \) (state holding time).
3. While \(T < T_{\text{max}} \)
 - Sample a \(t' \) by using the probability density function (3.7).
 - Sample an arrival state \(Y' \) for stochastic process \(Y(t) \) from all the possible states by using the conditional probability distribution (3.8).
 - Set \(T = T + t' \).
 - Calculate \(X(T) \) by using the physics eq. (3.3).
 - Set \(Z' = (X(T'), Y') \).
 - If \(T \leq T_{\text{max}} \)
 - If \(Z' \in \mathcal{F} \)
 - Set \(k' = k' + 1 \)
 - Break
 - Else (when \(T > T_{\text{max}} \))
 - Calculate \(Z(T_{\text{max}}) \)
 - If \(Z(T_{\text{max}}) \in \mathcal{F} \)
 - Set \(k' = k' + 1 \)
 - Break
 - End if
 - End if
End While

Finite-volume scheme

\[
P_{n+1}(A, i \mid \theta) = \frac{1}{1 + \Delta t b_A^i} \overline{P}_{n+1}(A, i \mid \theta) + \Delta t \sum_{j \in S} \frac{a_{A}^{j,i}}{1 + \Delta t b_{A}^j} \overline{P}_{n+1}(A, j \mid \theta)
\]
Reliability analysis for Design for Reliability:

From failure modeling to degradation-to-failure modeling

Integrating physics-of-failure knowledge in reliability models

- Multi-State Physic-Based Models

And the data?
ADT Procedure

Degradation Model:
Degradation VS Time

Stochastic process or degradation-path:

Wiener process: \(Y(t) = \sigma B(t) + d(S)t \)

Acceleration Model:
Stress VS Time

Physical or empirical models:

Arrhenius: \(d(S) = Ae^{-Ea/kS} \)
Data Analysis

Trend analysis & Accelerability Verification:

- Degradation Process Model
- Maximum Likelihood
- Degradation Fitting
- Parameter Estimation

Parameter estimation:

<table>
<thead>
<tr>
<th>\hat{a}</th>
<th>\hat{b}</th>
<th>$\hat{\sigma}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-36.961</td>
<td>13.112</td>
<td>8.278e-07</td>
</tr>
</tbody>
</table>

Reliability Prediction:
Challenges in ADT

- **Degradation trend**
 - The whole trend is defined (linear, exponential, etc.)

- **Aleatory uncertainty**
 - Inherent randomness
 - Probability

- **Epistemic uncertainty**
 - Incomplete knowledge due to limited information
 - Interval, possibility, etc.

Challenges:

- Traditional methods mainly model degradation trend and aleatory uncertainty.

- Failing to consider epistemic uncertainty may cause serious reliability evaluation problems.

Stochastic Process – some revised models:

1. **DBM model**
 \[Y(t) = d(S) \cdot t + \sigma_B B(t) \]

2. **Revised model I**
 \[Y(t) = d(S)t + \sigma_B B(t) \]

3. **Revised model II**
 \[Y(t) = d(S)t + \sigma_B B(t) \]

- \(d(S) \): a definite value
- \(d(S) \sim N(\mu, \sigma^2) \)
- \(\overline{d(S)} \sim N(\mu, \sigma^2) \)
Problem statement

Failures

Prevented by

Design for Reliability

Maintenance

Redundancy Training Safety Reviews

No Hazard Hazard

Normal Degraded Failure

Time
Maintenance:

Integrating physics knowledge and data:

- Prognostics and Health Management (PHM)
Maintenance

- Corrective Maintenance
- Planned Periodic Maintenance
- Condition Based Maintenance (CBM)
- Predictive Maintenance (PrM)

Prognostics and Health Management (PHM)

PHM is fostered by advancements in:

- Sensor
- Algorithm
- Computation power
PHM for what?

PHM in support to CBM and PrM

- Fault Detection
 - Normal Conditions
 - Abnormal Conditions
- Fault Diagnostics
 - Anomaly of Type 1
 - Anomaly of Type 2
 - Anomaly of Type 3
- Fault Prognostics
 - Remaining Useful Life (RUL)

Equipment Maintenance Decision
Abnormal Conditions
Normal Conditions

Vibration
Temperature

Sensors measurements

Maintenance
Decision
No Maintenance
Maintenance
- **Increase** maintainability, availability, safety, operating performance and productivity

- **Reduce** downtime, number and severity of failure and life-time cost
PHM: how? (Fault detection)

MODEL OF PLANT BEHAVIOR IN NORMAL OPERATION

- Nominal Range-based
- Physics-based
- Data-Driven (AAKR, PCA, RNN, …)

Signal reconstructions ≠ Real measurements

Abnormal Condition
PHM: how? (Fault diagnostics)

- Signal measurements representative of the fault classes: $\langle x_1, x_2, ..., x_n, \text{class} \rangle$

- Empirical classification methods:
 - Support Vector Machines
 - K-Nearest Neighbours
 - Multilayer Perceptron Neural Networks
 - Supervised clustering algorithms
 - Ensemble of classifiers

- $C_1 = \text{Inner race}$
- $C_2 = \text{Balls}$
- $C_3 = \text{Outer race}$
PHM: how? (Fault prognostics)

Model-Based
- Physics-based model of the degradation process
- Measurement equation

Data-Driven
- Current degradation trajectory
- A threshold of failure
- External/operational conditions

- Degradation trajectories of similar components
- Life durations of a set of similar components

Kalman Filter
- Monte Carlo Simulation
- Hidden Semi-Markov Models
- Artificial Neural Networks
- Neuro-fuzzy systems

Particle filter
- Autoregressive (AR) models
- Similarity-based methods

Degrading component

Similar components
PHM: performance?

- Accuracy
• Accuracy
 ➢ Fault Detection:
 - Low rate of False Alarms
 - Low rate of Missing Alarms

Example:

<table>
<thead>
<tr>
<th>False Alarm Rates</th>
<th>Missing Alarm Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.54%</td>
<td>0.98%</td>
</tr>
</tbody>
</table>
• Accuracy
 ➢ Fault diagnostics:
 ❑ Low Misclassifcation rate

\[
\text{Misclassification rate} = 2.58\%
\]
• Accuracy
 ➢ Prognostics
PHM &

1) Context changing
2) Uncertainty management
3) Fleet
4) Return of Investment
5) Safety
Context changing: concept

Present time

Changes

Context Changes
Monitoring components of a (e.g. nuclear power) plant

The detection model should be able to follow the process changes:

- Incremental learning of the new data that gradually becomes available
- No necessity of human intervention for:
 - selecting recent normal operation data
 - building the new model

New data are coming

Automatic updating of the model
Context changing (fault prognostics)

Degradation indicator vs. time (t)

Failure threshold
Context changing (prognostics)

Degradation indicator

![Graph showing the degradation indicator over time](image)
Context changing (fault prognostics)

- New FV: 13
- Changed FV: 57
1) Context Changing
2) Uncertainty management
3) Fleet
4) Return Of Investment
5) Safety

PHM &
Uncertainty management (prognostics)

Sources of uncertainty:
1) noise on the observations (measurements)

- **True leakage**
- **Leakage measurement**
Sources of uncertainty:
1) noise on the observations (measurements)
2) intrinsic stochasticity of the degradation process
Sources of uncertainty:
1) noise on the observations (measurements)
2) intrinsic stochasticity of the degradation process
3) unknown future external/operational conditions
4) Modeling errors, i.e. inaccuracy of the prognostic model used to perform the prediction

Uncertainty on the RUL prediction?

Maximum acceptable failure probability is 5%

Probability to have a failure in this interval is lower than 5%

Time for maintenance
1) Context Changing
2) Uncertainty management
3) Fleet
4) Return of Investment
5) Safety
Fleet (fault diagnostics)

• Can we use data from similar industrial plants of the same fleet to build diagnostic systems?

Plant A
(near the sea)

Temperature

Failure of Class 1

Failure of Class 2

Failure of Class 3

Plant B
(near a river)

Temperature

Plant Z
(in a very rainy region)

Temperature
SMART Reliability Engineering – component Challenges (PHM)

PHM &

1) Context Changing
2) Uncertainty management
3) Fleet
4) Return of Investment
5) Safety
Return Of Investment (ROI)

- Most frequently used measure to estimate the economic benefit of PHM:

\[ROI = \frac{\text{Cost avoidance}}{\text{Investment}} - 1 \]

Questions:
1- How to reformulate the ROI based on these economic benefits and make the ROI framework general?
2- How the performance indicators will affect the ROI?
1) Context Changing
2) Uncertainty management
3) Fleet
4) Return of Investment
5) Safety
Risk $\rightarrow (p_i, c_i | k)_{i=1,\ldots,N}$

PHM

- Avoided failures thanks to PHM
- Reduction of unnecessary maintenance interventions (< human errors in maintenance)
- ...
- Management of abnormal conditions
- Missing alarms of the fault detection system
- Late RUL predictions of the prognostic system
- Unexpected scenarios
- ...

$\rightarrow (p_i^*, c_i^* | k^*)_{i=1,\ldots,N^*}$

(Terje Aven, ESRA Webinar, What is Risk, March 17, 2016)
PHM & safety

+ PHM System

Safety?
Conclusions: Big KID and Smart KID
Conclusions: Smart KID for Reliability Engineering

SMART KID

Knowledge

Information

Data

Simulation, Modeling, Analysis, Research for Treasuring Knowledge, Information and Data

(for Reliability Engineering)
Conclusions: Smart KID for Reliability Engineering

Some challenges and opportunities in reliability engineering
Thanks…

…for your outstanding contributions
Thanks…

…for your attention